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Abstract. The notion of Shen’s process was introduced by Tayebi-Najafi in

order to construct the Shen connection from the Berwald connection. In this

paper, we study the connection which obtained by the Shen’s L-process on

the Chern connection. Let (M,F ) be a Finsler manifold. Suppose that D

is the linear torsion-free connection obtained by Shen’s L-process on Chern’s

connection. First, we show the existence and uniqueness of D. Then, we prove

that their hv-curvature coincides if and only if F is a Riemannian metric.
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1. Introduction

It is well-know that after the Einstein’s formulation of general relativity,

Riemannian geometry became fashionable and one of the connections, namely

Levi-Civita connection, came to forefront. This connection in Riemannian ge-

ometry is both torsion-free and metric-compatible. On the other hand, Finsler

geometry can be considered as a natural extension of Riemannian geometry.

Likewise, the connections in Finsler geometry can be prescribed on the natural

pulled-back bundle π∗TM . Examples of such connections were proposed by
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Taylor, Berwald, Cartan, Hashiguchi, Chern, Shen and Tayebi (see [8], [12]

and [15]). Recently, Tayebi with his collaborators have defined a general class

of Finsler connections which leads to a general representation of some Finsler

connections in Finsler geometry and yields a classification of Finsler connec-

tions into the three classes, namely, Berwald-type, Cartan-type and Shen-type

connections (see [3], [4] and [15]).

In [9], Matsumoto introduced a satisfactory and truly aesthetical axiomatic

description of Cartan’s connection in the sixties. After the Cartan connection

has been constructed, easy processes, baptized by Matsumoto “L-process” and

“C-process” yield the Chern, the Hashiguchi and the Berwald connections.

This means that the Chern, Berwald, and Hashiguchi connections are obtained

from the Cartan connection by Matsumoto’s processes, as depicted in following

Cartan connection
C−process
−−−−→ Chern connection

| |
L− process L− process

↓ ↓

Hashiguchi connection
C−process
−−−−→ Berwald connection

In [12], Shen introduced a new connection in Finsler geometry, which vanishing

hv-curvature of this connection characterizes Riemannian metrics [12]. How-

ever, the Shen connection can not be constructed by Matsumoto’s processes

from these well-known connections. In [18], Tayebi-Najafi introduced two new

processes on connections called Shen’s C and L-processes and showed that the

Shen connection is obtained from the Chern connection by Shen’s C-process.

Recently, we study the connections which obtained by Shen’s C- and L-process

on Berwald connection[7].

In this paper, we are going to study the connection which obtained by the

Shen’s L-process on the Chern connection. it is calledD. We show the existence

and uniqueness of D (see Theorem 2.1). Let (M,F ) be a Finsler manifold.

Suppose that D is the linear torsion-free connection obtained by Shen’s L-

process on Chern’s connection. Then, we prove that their the hv-curvature

coincide if and only if F is a Riemannian metric (see Theorem 3.1).

2. Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space

at x ∈ M , and by TM := ∪x∈MTxM the tangent bundle of M . Each element

of TM has the form (x, y), where x ∈ M and y ∈ TxM. Let TM0 = TM \ {0}.
The natural projection π : TM → M is given by π(x, y) := x.

The pull-back tangent bundle π∗TM is a vector bundle over TM0 whose

fiber π∗
vTM at v ∈ TM0 is TxM , where π(v) = x. Then

π∗TM =
{(

x, y, v
)∣∣ y ∈ TxM0, v ∈ TxM

}
.
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Some authors prefer to define connections in the pull-back tangent bundle

π∗TM . From geometrical point of view, the construction of these connec-

tions on π∗TM seems to be simple because here the fibers are n-dimensional(
i.e., π∗(TM)u = Tπ(u)M, ∀u ∈ TM

)
thus torsions and curvatures are obtained

quickly from the structure equations. When the construction is done on T (TM)

many geometrical objects appear twice and one needs to split T (TM) in the

vertical and horizontal parts where the latter is called horizontal distribution or

non-linear connection. Nevertheless we do not need to split π∗TM . Indeed the

connection on π∗(TM) is the most natural connection for Physicists. In order

to define curvatures, it is more convenient to consider the pull-back tangent

bundle than the tangent bundle, because our geometric quantities depend on

directions.

For the sake of simplicity, we denote by
{
∂i|v := (v, ∂

∂xi |x)
}n
i=1

the natural

basis for π∗
vTM . In Finsler geometry, we study connections and curvatures in

(π∗TM,g), rather than in (TM,F ). The pull-back tangent bundle π∗TM is

very special tangent bundle.

A (globally defined) Finsler structure on a manifold M is a function F :

TM → [0,∞), with the following properties:

(i) F is a differentiable function on the manifold TM0 and is continuous on the

null section of the projection π : TM → M ;

(ii) F : TM → [0,∞) is a positive scalar function;

(iii) F is positively 1-homogeneous on the fibers of tangent bundle TM ;

(iv) The Hessian of F 2 with elements

(gij) :=

([
1

2
F 2

]
yiyj

)
is positively defined on TM0. Given a manifold M and a Finsler structure F

on M , the pair (M,F ) is called a Finsler manifold. F is called Riemannian if

gij(x, y) are independent of y ̸= 0.

The Finsler structure F defines a fundamental tensor g : π∗TM ⊗π∗TM →
[0,∞) by the formula g(∂i|v, ∂j |v) = gij(x, y), where v = yi ∂

∂xi |x . Let

gij(x, y) := FFyiyj + FyiFyj ,

where Fyi = ∂F
∂yi . Then (π∗TM,g) becomes a Riemannian vector bundle over

TM0.

Put

Aijk(x, y) =
1

2
F (x, y)

∂gij
∂yk

(
x, y
)
.

Clearly, Aijk is symmetric with respect to i, j, k. The Cartan tensor A :

π∗TM ⊗ π∗TM ⊗ π∗TM → R is defined by

A(∂i|v, ∂j |v, ∂k|v) = Aijk(x, y),
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where v = yi ∂
∂xi |x (see [20, 16]). In some literature Cijk =

Aijk

F is called Cartan

tensor. Riemannian manifolds are characterized by A ≡ 0. The homogeneity

condition (iii) holds in particular for positive λ. Therefore, by Euler’s theorem

we see that

yi
∂gij
∂yk

(x, y) = yj
∂gij
∂yk

(x, y) = yk
∂gij
∂yk

(x, y) = 0.

We recall that the canonical section ℓ is defined by:

ℓ = ℓ(x, y) =
yi

F (x, y)

∂

∂xi
=

yi

F

∂

∂xi
:= ℓi

∂

∂xi
.

Put ℓi := gijℓ
j = Fyi . Thus the canonical section ℓ satisfies

g(ℓ, ℓ) = gij
yi

F

yj

F
= 1

and

ℓiAijk = ℓjAijk = ℓkAijk = 0.

Thus A(X,Y, ℓ) = 0.

Given an n-dimensional Finsler manifold (M,F ), then a global vector field

G is induced by F on TM0, which in a standard coordinate (xi, yi) for TM0

is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi = Gi(x, y) are called spray coefficients and given by the following

Gi =
1

4
gil
[ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

]
. (2.1)

G is called the spray associated to F .

DefineBy : TxM⊗TxM⊗TxM → TxM byBy(u, v, w) := Bi
jkl(y)u

jvkwl ∂
∂xi |x,

where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
=

∂2N i
j

∂yk∂yl
.

By(u, v, w) is symmetric in u, v and w. From the homogeneity of spray coef-

ficients, we have By(y, v, w) = 0. B is called the Berwald curvature. Indeed,

L. Berwald first discovered that the third order derivatives of spray coefficients

give rise to an invariant for Finsler metrics. F is called a Berwald metric if

B = 0 [17]. In this case, Gi are quadratic in y ∈ TxM for all x ∈ M , i.e., there

exists Γi
jk = Γi

jk(x) such that

Gi = Γi
jky

jyk.

There is another equal definition for a Berwald metric as follows. A Finsler

metric F is called a Berwald metric if the Cartan torsion of F satisfies the

following

Aijk|l = 0.
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where the ”| ” and ”, ” denote the horizontal and vertical covariant derivatives

with respect to the Berwald connection.

For y ∈ TxM , define the Landsberg curvature Ly : TxM ⊗TxM ⊗TxM → R
by

Ly(u, v, w) := −1

2
gy

(
By(u, v, w), y

)
.

In local coordinates, Ly(u, v, w) := L ijk(y)u
ivjwk, where

Lijk := −1

2
ylB

l
ijk.

Ly(u, v, w) is symmetric in u, v and w and Ly(y, v, w) = 0. L is called the

Landsberg curvature. A Finsler metric F is called a Landsberg metric if Ly = 0

[13]. Equivalently, a Finsler metric F is called a Landsberg metric if the Cartan

torsion of F satisfies the following

Aijk|mym = 0.

It is easy to see that, every Berwald metric is a Landsberg metric.

2.1. The Bundle Maps. In [1], Akbar-Zadeh developed the modern theory of

global Finsler geometry by establishing a global definition of Cartan connection.

For this aim, he introduced two bundle maps ρ and µ. Here, we give a short

introduction of these bundle maps. Let TTM be the tangent bundle of TM

and ρ the canonical linear mapping{
ρ : TTM0 → π∗TM

X̂ 7−→
(
z, π∗(X̂)

)
,

where X̂ ∈ TzTM0 and z ∈ TM0. The bundle map ρ satisfies

ρ
( ∂

∂xi

)
= ∂i, ρ

( ∂

∂yi

)
= 0. (2.2)

Let VzTM be the set of vertical vectors at z, that is, the set of vectors tangent

to the fiber through z, or equivalently VzTM = kerρ, called the vertical space.

By means of these considerations, one can see that the following sequence is

exact

0→V TM
i−→ TTM

ρ−→ π∗TM −→ 0 , (2.3)

where i is the natural inclusion map.

Let∇ be a linear connection on π∗TM , that is∇ : TzTM0×π∗TM → π∗TM

such that ∇ : (X̂, Y ) 7→ ∇X̂Y . Let us define the linear mapping{
µz : TzTM0 → TπzM

X̂ 7−→ ∇X̂Fℓ,
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where X̂ ∈ TzTM0. For a torsion-free connection ∇ the bundle map µ satisfies

µ
( ∂

∂xi

)
= Nk

i ∂k, µ
( ∂

∂yi

)
= ∇ ∂

∂yi
Fℓ = ρ

([ ∂

∂yi
, yk

∂

∂xk

])
= ∂i. (2.4)

where Nk
i = FΓk

ijℓ
j and Γk

ij are Christoffel symbols of ∇.

Let us put
δ

δxi
:=

∂

∂xi
−Nk

i

∂

∂yk
.

Then

µ
( δ

δxi

)
= 0.

The connection∇ is called a Finsler connection if for every z ∈ TM0, µz defines

an isomorphism of VzTM0 onto TπzM . Therefore, the tangent space TTM0 in

z is decomposed as

TzTM0 = HzTM ⊕ VzTM,

where HzTM = kerµz is called the horizontal space defined by ∇. Indeed any

tangent vector X̂ ∈ TzTM0 in z decomposes to

X̂ = HX̂ + V X̂,

where HX̂ ∈ HzTM and V X̂ ∈ VzTM . Thus ρ restricted to HTM is an

isomorphism onto π∗TM , and µ restricted to V TM is the bundle isomorphism

onto π∗TM .

The structural equations of the Finsler connection ∇ are

T∇(X̂, Ŷ ) := ∇X̂Y −∇Ŷ X − ρ[X̂, Ŷ ], (2.5)

Ω(X̂, Ŷ )Z := ∇X̂∇Ŷ Z −∇Ŷ ∇X̂Z −∇[X̂,Ŷ ]Z, (2.6)

where X = ρ(X̂), Y = ρ(Ŷ ) and Z = ρ(Ẑ). The tensors T∇ and Ω are

called respectively the torsion and curvature tensors of ∇. They determine

two torsion tensors defined by

S(X,Y ) := T∇(HX̂,HŶ ), T (Ẋ, Y ) := T∇(V X̂,HŶ )

and three curvature tensors defined by

R(X,Y ) := Ω(HX̂,HŶ ),

P (X, Ẏ ) := Ω(HX̂, V Ŷ ),

Q(Ẋ, Ẏ ) := Ω(V X̂, V Ŷ ),

where Ẋ = µ(X̂) and Ẏ = µ(X̂).

Chern Connection: Let (M,F ) be an n-dimensional Finsler manifold. Then

the Chern connectionD is a linear connection in π∗TM , which has the following

properties:

(i): D is torsion-free, i.e., ∀X̂, Ŷ ∈ C∞(T (TM0)
)

T (X̂, Ŷ ) := DX̂ρ(Ŷ )−DŶ ρ(X̂)− ρ
(
[X̂, Ŷ ]

)
= 0. (2.7)
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(ii): D is almost compatible with F in the following sence

(DẐg)(X,Y ) := Ẑg(X,Y )− g(DẐX,Y )− g(X,DẐY )

= 2F−1A(µ(Ẑ), X, Y ),
(2.8)

where X,Y ∈ C∞(π∗TM) and Ẑ ∈ Tv(TM0).

Theorem 2.1. Let (M,F ) be an n-dimensional Finsler manifold. Then there

is a unique linear connection D in π∗TM , which has the following properties:

(i) D is torsion-free in the sense of (2.7);

(ii) D is almost compatible with the Finsler structure in the following sense:

for all X,Y ∈ C∞(π∗TM) and Ẑ ∈ Tv(TM0),

(DẐg)(X,Y ) := 2F−1
[
A
(
µ(Ẑ), X, Y

)
+ Ȧ

(
µ(Ẑ), X, Y

)]
(2.9)

Proof. In a standard local coordinate system (xi, yi) in TM0, we write

D ∂

∂xi
∂j = Γk

ij∂k , D ∂

∂yi
∂j = F k

ij∂k.

Clearly, (2.7) and (2.9) are equivalent to the following

Γk
ij = Γk

ji, (2.10)

F k
ij = 0, (2.11)

∂(gij)

∂xk
= Γl

kiglj + Γl
kjgil + 2Γl

kmlm(Alij + Ȧlij), (2.12)

∂(gij)

∂yk
= F s

ikgsj + F s
kjgis + 2F−1(Aijk + Ȧijk) + 2F s

mkl
mAijs. (2.13)

Note that (2.11) and (2.13) are just the definition of Aijk. We must compute

Γk
ij from (2.10) and (2.12). Then making a permutation to i, j, k in (2.12), and

using (2.10) and Ak
ij = gklAijl. on obtains

Γk
ij = γk

ij + gkℓ
{
Γm
lb (Amij + Ȧmij)− Γm

ib (Amlj + Ȧmlj)− Γm
jb(Amil + Ȧmil)

}
ℓb

(2.14)

where we have put

γk
ij =

1

2
gkl
{

∂

∂xi
(gjl) +

∂

∂xj
(gil)−

∂

∂xl
(gij)

}
.

and Ak
ij = gklAijl. Multiplying (2.14) by ℓi implies that

Γk
ibℓ

b = γk
ibℓ

b − (Ak
im + Ȧk

im)Γm
lb ℓ

lℓb. (2.15)

Contracting (2.15) with ℓj yields

Γk
abℓ

aℓb = γk
abℓ

aℓb. (2.16)

By putting (2.16) in (2.15), one can obtain

Γk
ibℓ

b = γk
ibℓ

b − ℓaℓbγm
ab(A

k
mi + Ȧk

mi). (2.17)
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Putting (2.17) in (2.14) give us the following

Γk
ij = γk

ij + gkl
{
γm
lb (Amij + Ȧmij)− γm

ib (Amlj + Ȧmlj)− γm
jb(Amil + Ȧmil)

}
ℓb

+γs
abℓ

aℓb
{
(Am

sj + Ȧm
sj)(A

k
mi + Ȧk

mi) + (Am
si + Ȧm

si)(A
k
mj + Ȧk

mj)

−(Ak
sm + Ȧk

sm)(Am
ij + Ȧm

ij )
}
.

This proves the uniqueness of D. The set {Γk
ij , F

k
ij = 0}, where {Γk

ij} are given

by (2.7), defines a linear connection D satisfying (2.7) and (2.9).

3. Curvatures of the Connection D

The curvature tensor Ω of D is defined by

Ω(X̂, Ŷ )Z = DX̂DŶ Z −DŶ DX̂Z −D[X̂,Ŷ ]Z, (3.1)

where X̂, Ŷ ∈ C∞(T (TM0)) and Z ∈ C∞(π∗TM). Let {ei}ni=1 be a local

orthonormal (with respect to g) frame field for the vector bundle π∗TM such

that g(ei, en) = 0, i = 1, ..., n − 1 and en := y
F = yi

F (x,y)
∂

∂xi = ℓ. Let {ωi}ni=1

be its dual co-frame field. These are local sections of dual bundle π∗TM . One

readily finds that ωn := ∂F
∂yi dx

i = ℓidx
i = ω, which is the Hilbert form. It is

obvious that ω(ℓ) = 0. Now, let us put ρ = ωi ⊗ ei, Dei = ω j
i ⊗ ej , Ωei =

2Ω j
i ⊗ej . {Ω j

i } and {ω j
i } are called the curvature forms and connection forms

of D with respect to {ei}. We have µ := DFℓ = F{ω i
n + d(logF )δin} ⊗ ei. Put

ωn+i := ω i
n + d(logF )δin. It is easy to see that {ωi, ωn+i}ni=1 is a local basis

for T ∗(TM0). By definition ρ = ωi ⊗ ei, µ = Fωn+i ⊗ ei. Use the above

formula for Theorem 2.1, then it re-express the structure equation of the new

connection D

dωi = ωj ∧ ω i
j (3.2)

dgij = gkjω
k

i + gkiω
k

j + 2(Aijk + Ȧijk)ω
n+k. (3.3)

Define gij.k and gij|k by

dgij − gkjω
k

i − gikω
k

j = gij|kω
k + gij.kω

n+k. (3.4)

where gij.k and gij|k are respectively the vertical and horizontal covariant de-

rivative of gij with respect to the connection D. This gives

gij|k = 0, (3.5)

gij.k = 2(Aijk + Ȧijk), (3.6)

It can be shown that δij|s = 0 and δij.s = 0, thus (gijgjk)|s = 0 and (gijgjk).s =

0. So

gij|s = gij , gij.s = −2(Ȧij
s +Aij

s ). (3.7)

Moreover torsion freeness is equivalent to the absent of dyk in {ω i
j } namely

ω i
j = Γi

jk(x, y)dx
k (3.8)
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is equivalent to

dω j
i − ω k

i ∧ ω j
k = Ω j

i . (3.9)

Since the Ω i
j are 2-forms on the manifold TM0, they can be generally expanded

as

Ω j
i =

1

2
R j

i klω
k ∧ ωl + P j

i klω
k ∧ ωn+l +

1

2
Q j

i klω
n+k ∧ ωn+l. (3.10)

The objects R, P and Q are respectively the hh-, hv- and vv-curvature tensors

of the connectionD. Let {ēi, ėi}ni=1 be the local basis for T (TM0), which is dual

to {ωi, ωn+i}ni=1, i.e., ēi ∈ HTM, ėi ∈ V TM such that ρ(ēi) = ei, µ(ėi) = Fei.

Let us put

R(ēk, ēl)ei = R j
i klej , P (ēk, ėl)ei = P j

i klej , Q(ėk, ėl)ei = Q j
i klej .

The connection defined in Theorem 2.1 is torsion-free. Then we have Q = 0.

First Bianchi identity for R is given by

R j
i kl +R j

k li +R j
l ik = 0 (3.11)

and

P j
i kl = P j

k il. (3.12)

Exterior differentiation of (3.9) gives the second Bianchi identity:

dΩ j
i − ω k

i ∧ Ω j
k + ω j

k ∧ Ω k
i = 0. (3.13)

We decompose the covariant derivative of the Cartan tensor on TM

dAijk −Aljkω
l

i −Ailkω
l

j −Aijlω
l

k = Aijk|lω
l +Aijk.lω

n+l. (3.14)

Similarly, for Ȧijk we get

dȦijk − Ȧljkω
l

i − Ȧilkω
l

j − Ȧijlω
l

k = Ȧijk|lω
l + Ȧijk.lω

n+l. (3.15)

It is easy to see that, Aijk|l, Aijk.l, Ȧijk|l and Ȧijk.l are symmetric with respect

to indices i, j and k.

Put Ȧijk = Ȧ(ei, ej , ek). Then

Aijk|n = Ȧijk. (3.16)

By (3.14) and (3.15), we get

Anjk|l = 0, and Anjk.l = −Ajkl. (3.17)

Ȧnjk|l = 0, and Ȧnjk.l = −Ȧjkl. (3.18)

Theorem 3.1. Let (M,F ) be a Finsler manifold. Suppose that D is the linear

torsion-free connection obtained by Shen’s L-process on Chern’s connection.

Then their hv-curvature coincides if and only if F is a Riemannian metric.
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Proof. Let ∇̃ be obtained from ∇ by Shen’s L-process

ω̃i
j = ωi

j +Ai
kjω

k − Ȧi
jkω

n+k (3.19)

Taking exterior differential from (3.19) yields

dω̃i
j = dωi

j + dAi
kjω

k +Ai
kjdω

k − dȦi
jkω

n+k − Ȧi
kjdω

n+k (3.20)

Substituting (3.15) in (3.20) and using (3.9) and (3.3), we get

Ω̃i
j = Ωi

j +Ak
ujȦ

k
kmωu ∧ ωm +Ak

ujȦ
k
kmωu ∧ ωn+m + Ȧk

juA
i
kmωn+u ∧ ωm

− Ȧk
juȦ

i
kmωn+u ∧ ωn+m +Ai

jk|sω
s ∧ ωk +Ai

jk.sω
n+s ∧ ωk − Ȧi

jkΩ
k
n

− Ȧi
jk|sω

s ∧ ωn+k − Ȧi
jk.sω

n+s ∧ ωn+k (3.21)

By decomposing Ω̃i
j and Ωi

j as in (3.10), one can obtain:

R̃i
jkl = Ri

jkl + 2As
kjȦ

i
sl − 2Ai

jk|l + Ȧi
jsR

s
nkl, (3.22)

P̃ i
jkl = P i

jkl +As
kjȦ

i
sl − Ȧs

jlA
i
sk −Ai

jk.l − Ȧi
jsP

s
nlk − Ȧi

jl|k, (3.23)

Ȧs
jkȦ

i
sl + Ȧi

jk.l = 0. (3.24)

By (3.23), it is easy to see that if F is Riemannian then P̃ = P .

Conversely, suppose that P̃ = P . Then, we have

As
kjȦ

i
sl − Ȧs

jlA
i
sk −Ai

jk.l − Ȧi
jsP

s
nlk − Ȧi

jl|k = 0. (3.25)

Contracting (3.25) with yj yields

Aijk.ly
j + Ȧijl|ky

j = 0. (3.26)

Since yj|k = 0, then Ȧijl|ky
j = (Ȧijly

j)|k which implies that Ȧijl|ky
j = 0. Then

(3.26) reduces to following

Aijk.ly
j = 0. (3.27)

On the other hand, the following holds

0 = (yjAijk),l = Ailk +Aijk,ly
j .

Thus

Aijk,l y
j = −Aikl.

Therefore Aikl = 0 and F reduces to a Riemannian metric. This completes the

proof. □



22 M. Faghfouri, N. Jazer

References

1. H. Akbar-Zadeh, Les espaces de Finsler et certaines de leurs généralisations. (French)
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