The main focus of this paper is concern to the study on the point-wise Osserman structure on 4-dimensional Lorentzian Lie group. In this paper we study on the spectrum of the Jacobi operator and spectrum of the skew-symmetric curvature operator on the non-abelian 4-dimensional Lie group G, whenever G equipped with an orthonormal left invariant pseudo-Riemannian metric g of signature (-;+;+; +), i.e, Lorentzian metric, where e1 is a unit time-like vector. The Lie algebra structure in dimension four has key role in our investigation, also in this case we study on the classification of 1-Stein and mixed IP spaces. At the end we show that G does not admit any space form and Einstein structures.
1. D. Alekseevsky, N. Blazic, N.Bokan, Z. Rakic, Self-duality and pointwise Osserman spaces, Arch. Math. (Brno), 35, (1999), 193-201.
2. N. Blazic, N. Bokan and P. Gilkey, A note on Osserman Lorentzian manifolds, Bull. London Math. Soc. 29 (1997), 227-230. MR 97m:5311.
3. N. Blazic, N. Bokan and P. Gilkey and Z.Rakic, pseudo-Riemannian Osserman manifolds, (preprint 1997).
4. M. Brozos-Vazquez, p. Gilkey and S. Nikcevic, Jacobi-Tsankov manifolds which are not 2-step nilpotent, arxiv: math/ 0609565v1 [math DG] 20 sep 2006.
5. E. Garcia-Ro, D. Kupeli, and R. Vazquez-Lorenzo, Osserman Manifolds in SemiRiemannian Geometry, Lecture notes in Mathematics, Springer Verlag, (2002), ISBN 3-540-43144-6.
6. P. Gilkey, Geometric Properties of natural operators Defined by the Riemannian curvature Tensor, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
7. P. Gilkey. The Geometry of Curvature Homogeneous Pseudo-Riemmannian Manifolds, Advanced Texts in Mathematics, 2 Imperial College Press, London, 2007.
8. P. Gilkey, R. Ivanova, and T. Zhang, Szabo Osserman IP Pseudo-Riemannian manifolds, arXiv: math/ 0205085v1 [math. DG] 8 may 2002.
9. G. M. Mubarakzyanov, On solvable Lie algebras, Izv. Vys. Ucheb. Zaved. Matematika (in Russian), 1(32), (1963), 114–123.
10. B. O”Neil, Semi-Riemannian Geometry with application to Relativity, Academic press, New york, 1983.
11. I. Polterovich, D. A. Sher, Heat invariants of the steklov problem, the Journal of Geometric Analysis 25, 2 (2015), 924-950.
12. F. W. Warner, Foundations of differentiable manifolds and Lie groups, Scott-Foresman, Glenview, Illinois, 1971.
13. Y. Wang, M. Ben-Chen, I. Polterovich, J. solomon, steklov spectral geometry for extrinsic shape analysis. arXiv: 1707.07070 (2017)
Seifipour, D. (2022). On the spectral geometry of 4-dimensional Lorentzian Lie group. Journal of Finsler Geometry and its Applications, 3(2), 99-118. doi: 10.22098/jfga.2022.11917.1080
MLA
Davood Seifipour. "On the spectral geometry of 4-dimensional Lorentzian Lie group", Journal of Finsler Geometry and its Applications, 3, 2, 2022, 99-118. doi: 10.22098/jfga.2022.11917.1080
HARVARD
Seifipour, D. (2022). 'On the spectral geometry of 4-dimensional Lorentzian Lie group', Journal of Finsler Geometry and its Applications, 3(2), pp. 99-118. doi: 10.22098/jfga.2022.11917.1080
VANCOUVER
Seifipour, D. On the spectral geometry of 4-dimensional Lorentzian Lie group. Journal of Finsler Geometry and its Applications, 2022; 3(2): 99-118. doi: 10.22098/jfga.2022.11917.1080