Reversibility and sub-reversibility of Finsler metrics

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, University of Qom Qom. Iran

Abstract

In order to extend the sphere theorem for Finsler metrics, the concept of reversibil-
ity introduced by H-B. Rademacher for a compact Finsler manifold. In this paper, we
extend this notion to the general Finsler manifolds. Then we find an upper bound for
the reversibility of some important spherically symmetric Finsler metrics. Furthermore,
we introduce the concept of sub-reversibility for a general Finsler manifold and obtain a
non-zero lower bound for this new quantity.

Keywords


  • 1. P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The theory of sprays and Finsler
    Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, (1993).
  • 2. M. Berger, Les vari´et´es Riemanniennes 1/4-pinc´ees, Ann. Scuola Norm. Sup. Pisa.
    14(1960), 161-170.
  • 3. L. Berwald, Uber Finslersche und Cartansche geometrie IV, Projek-tivkrmmung all- ¨
    gemeiner affiner R¨aume und Finslersche R¨aume skalarer Kr¨ummung, Ann. Math.
    48(1947), 755-781.
  • 4. L. Berwald, Uber die ¨ n-dimensionalen Geometrien konstanter Kr¨ummung, in denen die
    Geraden die k¨urzesten sind. Math. Z. 30(1929), 449-469.
  • 5. R. Bryant, Finsler structures on the 2-sphere satisfying K = 1, Finsler Geometry, Contemporary Mathematics, Amer. Math. Soc, Providence, RI. 196(1996), 27-42.
  • 6. X. Cheng and Z. Shen, Randers metrics with special curvature properties, Osaka. J.
    Math. 40(2003), 87-101.
  • 7. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics,
    (2005).
  • 8. M. Crasmareanu, New tools in Finsler geometry: stretch and Ricci solitons, Math. Rep.,
    Buchar. 16(66), 1(2014), 83-93.
  • 9. P. Funk, Uber Geometrien, bei denen die Geraden die K¨urzesten sind ¨ , Math. Ann.
    101(1929), 226-237.
  • 10. L. Huang and X. Mo, On spherically symmetric Finsler metrics of scalar curvature, J.
    Geom. Phys. 62(2012), 2279-2287.
  • 11. L. Huang and X. Mo, Projectively flat Finsler metrics with orthogonal invariance, Ann.
    Polon. Math. 107(2013), 259-270.
  • 12. W. Klingenberg, Uber Riemannsche Mannigfaltigkeiten mit positiver Kr¨ummung ¨ , Comment. Math. Helv. 35(1961), 47-54.
  • 13. X. Mo and L. Zhou, A class of Finsler metrics with bounded Cartan torsion, Canad.
    Math. Bull. 53(2010), 122-132.
  • 14. H. B. Rademacher, A sphere theorem for non-reversible Finsler metrics, Math. Ann.
    328(2004), 373-387.
  • 15. H.E. Rauch, A contribution to differential geometry in the large, Ann. of Math. 54(1951),
    38-55.
  • 16. S. F. Rutz, Symmetry in Finsler spaces, Finsler Geometry, Contemporary Mathematics,
    Amer. Math. Soc, Providence, RI. 196(1996), 289-300.
  • 17. Z. Shen, Finsler metrics with K = 0 and S = 0, Canadian J. Math. 55(2003), 112-132.
  • 18. Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
  • 19. A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α, β)-metrics, Indagationes Mathematicae, 27(2016), 670-683.
  • 20. A. Tayebi and Najafi, Classification of 3-dimensional Landsbergian (α, β)-mertrics, Publ.
    Math. Debrecen, 96(2020), 45-62.
  • 21. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ.
    Geom. Appl. 62(2019), 253-266.
  • 22. A. Tayebi and M. Razgordani, Four families of projectively flat Finsler metrics with
    K = 1 and their non-Riemannian curvature properties, Rev. R. Acad. Cienc. Exactas
    F´ıs. Nat. Ser. A Math. RACSAM, 112(2018), 1463-1485.
  • 23. L. Zhou, Spherically symmetric Finsler metrics in Rn, Publ. Math. Debrecen. 80(2012),
    67-77.
  • 24. L. Zhou, Projective spherically symmetric Finsler metrics with constant flag curvature
    in Rn, Geom. Dedicata. 158(2012), 353-364.