In this paper, we study conformally flat 5-th root (α, β)-metrics. We prove that every conformally flat 5-th root (α, β)-metric with relatively isotropic mean Landsberg curvature must be either Riemannian metrics or locally Minkowski metrics.
1. M. Amini, On conformally flat cubic (α, β)-metrics, Journal of Finsler Geometry and its Applications, 2(1) (2021), 75-85.
2. P.L. Antonelli, R.S. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, 1993.
3. G.S. Asanov, Finslerian metric functions over product R × M and their potential applications, Rep. Math. Phys. 41(1998), 117-132.
4. X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen, 72(2008), 475-485.
5. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientiflc, Singapore, 2005.
6. B. Li and Z. Shen, On a class of weak Landsberg metrics, Science in China Series A, 50(2007), 75-85.
7. M. Matsumoto and S. Numata, On Finsler space with a cubic metric, Tensor (N. S). 33(2) (1979), 153-162.
8. L-I Piscoran and M. Amini, On conformally flat square-root (α, β)-metrics, Journal of Finsler Geometry and its Applications, 2(2) (2021), 89-102.
9. A. Tayebi, On generalized 4-th root metrics of isotropic scalar curvature, Mathematica Slovaca, 68(2018), 907-928.
10. A. Tayebi and M. Amini, Conformally flat 4-th root (α, β)-metrics with relatively isotropic mean Landsberg curvature, Math. Analysis. Convex. Optimization, 1(2) (2020), 25-34.
11. A. Tayebi and B. Najafi, On m-th root Finsler metrics, J. Geom. Phys. 61(2011), 1479- 1484.
12. A. Tayebi and B. Najafi, On m-th root metrics with special curvature properties, C. R. Acad. Sci. Paris, Ser. I. 349(2011), 691-693.
13. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ. Geom. Appl. 62(2019), 253-266.
14. A. Tayebi and M. Shahbazi Nia, A new class of projectively flat Finsler metrics with constant flag curvature K = 1, Differ. Geom. Appl. 41(2015), 123-133.
Amini, M. (2022). On conformally fat 5-th root (α, β)-metrics with relatively isotropic mean landsberg curvature. Journal of Finsler Geometry and its Applications, 3(2), 29-40. doi: 10.22098/jfga.2022.11477.1070
MLA
Marzeiya Amini. "On conformally fat 5-th root (α, β)-metrics with relatively isotropic mean landsberg curvature", Journal of Finsler Geometry and its Applications, 3, 2, 2022, 29-40. doi: 10.22098/jfga.2022.11477.1070
HARVARD
Amini, M. (2022). 'On conformally fat 5-th root (α, β)-metrics with relatively isotropic mean landsberg curvature', Journal of Finsler Geometry and its Applications, 3(2), pp. 29-40. doi: 10.22098/jfga.2022.11477.1070
VANCOUVER
Amini, M. On conformally fat 5-th root (α, β)-metrics with relatively isotropic mean landsberg curvature. Journal of Finsler Geometry and its Applications, 2022; 3(2): 29-40. doi: 10.22098/jfga.2022.11477.1070