On conformally fat 5-th root (α, β)-metrics with relatively isotropic mean landsberg curvature

Document Type : Original Article

Author

Department of Mathematics, Faculty of science University of Qom, Qom, Iran.

Abstract

In this paper, we study conformally flat 5-th root (α, β)-metrics. We prove that every conformally flat 5-th root (α, β)-metric with relatively isotropic mean Landsberg curvature must be either Riemannian metrics or locally Minkowski metrics.

Keywords


  • 1. M. Amini, On conformally flat cubic (α, β)-metrics, Journal of Finsler Geometry and its
    Applications, 2(1) (2021), 75-85.
  • 2. P.L. Antonelli, R.S. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler
    Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, 1993.
  • 3. G.S. Asanov, Finslerian metric functions over product R × M and their potential applications, Rep. Math. Phys. 41(1998), 117-132.
  • 4. X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg
    curvature, Publ. Math. Debrecen, 72(2008), 475-485.
  • 5. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientiflc, Singapore, 2005.
  • 6. B. Li and Z. Shen, On a class of weak Landsberg metrics, Science in China Series A,
    50(2007), 75-85.
  • 7. M. Matsumoto and S. Numata, On Finsler space with a cubic metric, Tensor (N. S).
    33(2) (1979), 153-162.
  • 8. L-I Piscoran and M. Amini, On conformally flat square-root (α, β)-metrics, Journal of
    Finsler Geometry and its Applications, 2(2) (2021), 89-102.
  • 9. A. Tayebi, On generalized 4-th root metrics of isotropic scalar curvature, Mathematica
    Slovaca, 68(2018), 907-928.
  • 10. A. Tayebi and M. Amini, Conformally flat 4-th root (α, β)-metrics with relatively
    isotropic mean Landsberg curvature, Math. Analysis. Convex. Optimization, 1(2) (2020),
    25-34.
  • 11. A. Tayebi and B. Najafi, On m-th root Finsler metrics, J. Geom. Phys. 61(2011), 1479-
    1484.
  • 12. A. Tayebi and B. Najafi, On m-th root metrics with special curvature properties, C. R.
    Acad. Sci. Paris, Ser. I. 349(2011), 691-693.
  • 13. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ.
    Geom. Appl. 62(2019), 253-266.
  • 14. A. Tayebi and M. Shahbazi Nia, A new class of projectively flat Finsler metrics with
    constant flag curvature K = 1, Differ. Geom. Appl. 41(2015), 123-133.