Some results in generalized symmetric square-root spaces

Document Type : Original Article

Author

Department of Mathematics, University of Mohaghegh Ardabili, p.o.box. 5619911367, Ardabil-Iran.

Abstract

In this paper, we study generalized symmetric Finsler spaces with special (α , β ) -space. In fact, we study this spaces with square-root metric and we prove that generalized symmetric (α , β ) -spaces with square-root metric must be Riemannian.

Keywords


  • 1. P. Bahmandoust, D. Latifi On Finsler s-manifolds, European Journal of Pure and Applied Mathematics, Vol 10, 5, (2017), 1099-1111.
  • 2. S. S. Chern, Finsler geometry is just Riemannian geometry without quadratic restriction,
    Notices AMS,43(9), (1996), 959963.
  • 3. M. Ebrahimi, D. Latifi, Geodesic vectors of Randers metric on generalized symmetric
    spaces, global J. of Adv. Res. on class and Mod. Geom , Vol 10, (2021), 153-165.
  • 4. M. Ebrahimi, D. Latifi, Homogeneous geodesics on five-dimensional generalized symmetric spaces , Int. J. of Geom, Vol 11 , 1, (2022), 17-23.
  • 5. P. Habibi, A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata, 149,
    (2010), 121-127.
  • 6. O. Kowalski, Riemannian manifolds with general symmetries, Math. Z. 136, (1974),137-
    150.
  • 7. D. Latifi, A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys, 57, (2006) 357-
    366. Erratum: Rep. Math. Phys. 60, (2007), 347.
  • 8. D. Latifi, Berwald manifolds with parallel s-structures, Acta Universitatis Apulensis, 36,
    (2013), 79-86.
  • 9. D. Latifi, M. Toomanian, On Finsler s-spaces, J. Contemp. Math. Anal , 50, (2015),
    107-115.
  • 10. D. Latifi, On generalized symmetric square metrics, Acta Universitatis Apulensis, 68,
    (2021), 63-70.
  • 11. A. J. Ledger, Espaces de Riemann symmetriques generalises, C. R. Acad. Sci. Paris 264,
    (1967),947-948.
  • 12. A. J. Ledger, M. Obata, Affine and Riemannian s-manifolds, J. Differ. Geom. 2,
    (1968),451-459.
  • 13. M. Matsumoto, On C-reducible Finsler-spaces, Tensor, N. S. 24, (1972),2937.
  • 14. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev.
    59, (1941),195199.
  • 15. M. L. Zeinali, On generalized symmetric Finsler spaces with some special (α, β) -metrics,
    Journal of Finsler Geometry and its Applications , 1(1), (2020), 45-53.