On conformal vector fields on Einstein Finsler manifolds

Document Type : Original Article

Author

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Niavaran Bldg., Niavaran Square, Tehran, P.O. Box: 19395-5746, Iran. samanehsaberali@gmail.com

Abstract

In this paper, we study conformal vector fields on Finsler manifolds. Let (M,g) be an Einstein-Finsler manifold of dimension n ≥ 2. Suppose that V is conformal vector field on M. We show that V is a concircular vector field.

Keywords


  • 1. P. Agrawal, On the concircular geometry in Finsler spaces, Tensor N.S. 23(1972), 333-
    336.
  • 2. H. Akbar-Zadeh, Initiation to Global Finslerian Geometry, North-Holland Mathematical
    Library, 2006.
  • 3. S. B´acs´o and X. Cheng, Finsler conformal transformations and the curvature invariants,
    Publ. Math. Debrecen. 70(2007), 221-231.
  • 4. B. Bidabad and P. Joharinad, Conformal vector fields on Finsler spaces, Differ. Geom.
    App. 31(2013), 33–40.
  • 5. B. Bidabad and Z. Shen, Circle-preserving transformations in Finsler spaces, Publ.
    Math. Debr. 81(2012), 435-445.
  • 6. H.W. Brinkmann, Einstein spaces which are mapped conformally one achother, Math.
    Ann. 94(1925), 119145.
  • 7. B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific Publishing, Hackensack, 2011.
  • 8. G. Chen, X. Cheng and Y. Zou, On Canformal transformations between two (α, β)
    metrics, Diff. Geom. Appl. 31(2013), 300-307.
  • 9. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J.
    Math. 169(2009), 317-340.
  • 10. S.S. Chern and Z. Shen, Reimann-Finsler Geometry, Nankai Tracts Math, World Scientific, 2005.
  • 11. A. Deicke, Uber die Finsler-Raume mit ¨ Ai = 0, Arch. Math. 4(1953), 45-51.
  • 12. A. Fialkow, The conformal theory of curves. Trans. Am. Math. Society. 51(1942), 435-
    497.
  • 13. S. Ishihara, On infinitesimal concircular transformations, Kˆodai Math. Sem. Rep.
    12(1960), 45-56.
  • 14. S. Ishihara and Y. Tashiro, On Riemannian manifolds admitting a concircular transformation, Math. J. Okayama Univ. 9 (1959), 19-47.
  • 15. W. K¨uhnel, and H-B. Rademacher, Conformal diffeomorphisms preserving the Ricci
    tensor, Proc. American. Math. Soc. 123(1995) , 2841–2848.
  • 16. W. K¨uhnel, Conformal Transformations between Einstein Spaces, 1988, Volume 12.
  • 17. M. Maleki and N. Sadeghzadeh, On conformally related spherically symmetric Finsler
    metrics, Int. J. Geom. Meth. Modern. Phys. 13(10) (2016), 1650118, 16 pages.
  • 18. S. Masoumi, Projective vector fields on special (α, β)-metrics, Journal of Finsler Geometry and its Applications, 1(2) (2021), 83-93.
  • 19. X. Mo and H. Zhu, On a class of locally projectively flat general (α, β)-metrics, Bull.
    Korean. Math. Soc. 54(2017), 1293-1307.
  • 20. M. Obata, Conformal transformations of Riemannian manifolds, J. Differential Geom.
    4(1970), 311-333.
  • 21. S. F. Rutz, Symmetry in Finsler spaces, Contemporary Math. 196(1996), 289-300.
  • 22. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, (2001).
  • 23. Z. Shen and G. Yang, On concircular transformations in Finsler geometry, Results.
    Math. 74(2019), 162.
  • 24. Z. Shen and C. Yu, On a class of Einstein Finsler metrics, Int. J. Math. 25(04) (2014),
    1450030.
  • 25. Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. math.
    Soc. 117(1965), 251-275.
  • 26. W.O.K. Vogel, Transformationen in Riemannschen Ra¨umen, (German) Arch. Math.
    (Basel). 21 (1970-71), 641-645.
  • 27. Q. Xia, On a Class of Finsler Metrics of Scalar Flag Curvature, Results Math. 71 (2017),
    483-507.
  • 28. K. Yano, On concircular geometry I, Proc. Imp. Acad. (Tokyo), 16(1940), 195-200.
  • 29. C. Yu and H. Zhu, On a new class of Finsler metrics, Differ. Geom. Appl. 29(2011),
    244-254.