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Abstract. In this paper, we study conformal vector fields on Finsler mani-

folds. Let (M,g) be an Einstein-Finsler manifold of dimension n ≥ 2. Suppose

that V is conformal vector field on M . We find a condition under which V

reduces to a concircular vector field.
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1. Introduction

A geodesic circle in an Euclidean space is a straight line or a circle with finite

positive radius, which can be generalized naturally to Riemannian or Finsler

geometry. Firstly, in 1940, Yano introduced concircular transformations on Rie-

mannian manifolds [28]. Exactly, a geodesic circle in a Riemannian manifold,

as well as in a Finsler manifold, is a curve with constant first Frenet curvature

and zero second one. In other words, a geodesic circle is a torsion free curve

with constant curvature. A concircular transformation on a Riemannian man-

ifold is a conformal transformation which preserves geodesic circles ([12], [28]).

Many researchers have developed the theory of concircular transformations to

different contents ([13, 14, 25]). In 1970, Vogel showed that every concircular

transformation on a Riemannian manifold is conformal [26]. This notion has

been extended to Finsler geometry by Agrawal and Izumi [1]. Also, a similar

result is proved by Bidabad-Shen in 2012 [5]. That is, every transformation
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which preserves geodesic circles reduces to a conformal transformation. So,

by the modified definition, a diffeomorphism φ, between two Finsler manifolds

(M,F ) and (M̃, F̃ ), is said to be concircular if it maps geodesic circles to ge-

odesic circles. Also, two Finsler metrics defined on a manifold are said to be

concircular if they have the same geodesic circles.

In [4], Bidabad-Joharinad studied conformal vector fields on Finsler spaces.

They showed that every vector field on a Finsler space which keeps geodesic

circles (concircular vector fiels) invariant is conformal. An arbitrary vector field

V = vi(x)∂/∂xi on a Finsler manifold (M,g) is said to be concircular if

LV̂ g = 2ρg, ∇ρ+ g(G, ∇̇ρ) = ϕg, (1.1)

where, ∇ and ∇̇ are the Cartan horizontal and vertical covariant derivatives re-

spectively. Also, ρ = ρ(x) is a real function on M called characteristic function

of V . Here, V̂ is the complete lift of V , i.e., V̂ = vi(x)∂/∂xi + yj(∂jv
i)∂/∂yi.

They find a necessary and sufficient condition for a vector field to keep geo-

desic circles invariant. This leads to a significant definition of concircular vector

fields on a Finsler space. They classified complete Finsler spaces admitting a

special conformal vector fields.

The Liouville theorem explains that every conformal transformation between

two open neighborhoods of n-dimensional Euclideann-space (n ≥ 3) is a com-

bination of inversion and similarity. In [6], Brinkmann proved that a conformal

transformation of an Einstein metric on the Riemannian manifold (M,g) re-

mains Einstein if and only if the gradient of the conformal characteristic func-

tion ρ of this transformations satisfies the ODE: DiDjρ+ kρgij = 0, where D

is the Levi-Civita connection and k = k(x) is a constant equal to the scalar

curvature. In [28], Yano proved that the ODE holds for the characteristic func-

tion of a conformal transformation if and only if this transformation, which he

called concircular, leaves invariant geodesic circles.

An n-dimensional Finsler manifold (M,F ) is called an Einstein manifold if

Ric = (n− 1)k(x)F 2, where k = k(x) is a scalar function on M . In this paper,

we study conformal vector fields on Einstein Finsler manifold and prove the

following.

Theorem 1.1. Let (M,F ) be an Einstein Finsler manifold. Then every con-

formal vector field V on M reduces to a concircular vector field (1.1) if and

only if there are scalar functions λ = λ(x) and Ψ = Ψ(x, y) on M and TM ,

respectively, such that the following hold:

2(n− 2)(λgij − Ȧr
ijρr) +

[
Ψ+ 4(n− 1)kρ

]
gij +ΨijF

2

+2(Ψiyj +Ψjyi) = 0, (1.2)

ρrCk
ri = 0. (1.3)
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where Ck
ri and Ȧr

ij denote the Cartan torsion and Landsberg curvature of F .

Here, yi := FFyi , ρr := ∂ρ/∂xr, ρr := griρi, Ψi := Ψyi and Ψij := Ψyiyj .

2. Preliminary

Let M be an n−dimensional C∞ manifold. We denote by π : TM → M the

bundle of tangent vectors and by π0 : TM0 → M the fiber bundle of non-zero

tangent vectors. A Finsler structure on M is a function F : TM → [0,∞),

with the following properties:

i) F is C∞ on TM0 := TM − {0};
ii) F (x, y) is positively homogeneous of degree one in y, i.e. F (x, λy) =

λF (x, y), ∀λ > 0, where we denote an element of TM by (x, y);

iii) The Hessian matrix of F 2/2 is positive definite on TM0;

gij :=
1

2

∂2F 2

∂yi∂yj
.

A Finsler manifold (M, g) is a pair of a differential manifold M and a

tensor field g = (gij) on TM which defined by a Finsler structure F .

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,

define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
|t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. By definition, Cy is

a symmetric trilinear form on TxM . It is well known that C = 0 if and only if

F is Riemannian.

The spray of a Finsler structure F is a vector field on TM as:

G = yi
∂

∂xi
− 2Gi ∂

∂yi
. (2.1)

where Gi are called the spray (or geodesic) coefficients

Gi =
1

4
gil

{
F 2
xmyly

m − F 2
xl

}
(2.2)

and (gij) := (gij)
−1. The geodesics of F are characterized by the second order

differential equation:
d2ci

dt2
+ 2Gi(c(t), ċ(t)) = 0.

For y ∈ TxM0, define By : TxM × TxM × TxM → TxM by By(u, v, w) :=

Bi
jkl(y)u

jvkwl ∂
∂xi |x where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
.
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The quantity B is called the Berwald curvature of the Finsler metric F . We

call a Finsler metric F a Berwald metric, if B = 0.

For y ∈ TxM , define the Landsberg curvature Ȧy : TxM×TxM×TxM → R
by

Ȧy(u, v, w) := −1

2
gy

(
By(u, v, w), y

)
.

F is called a Landsberg metric if Ȧy = 0. By definition, every Berwald metric

is a Landsberg metric.

We denote here by Gi
j the coefficients of nonlinear connection on TM , where

Gi
j :=

∂Gi

∂yj
.

By means of this nonlinear connection tangent space can be split into the

horizontal and vertical subspaces with the corresponding basis { δ
δxi ,

∂
∂yi }, which

are related to the typical bases of TM , { ∂
∂xi ,

∂
∂yi }, by

δ

δxi
:=

∂

∂xi
−Gj

i

∂

∂yj
,

where

Γi
jk =

1

2
gil

(δgjl
δxk

+
δgkl
δxj

− δgjk
δxi

)
.

The components of the hh-curvature of Chern connection are expressed here

by

Ri
jkl =

δΓi
jl

δxk
+

δΓi
jk

δxl
− Γi

hkΓ
h
jl − Γi

hlΓ
h
jk.

Here, we denote by ∇ and ∇̇, horizontal and vertical covariant derivatives in

Cartan connection.

The following relations between Chern connection ∇ and Berwald connec-

tions D hold

DiY
k = ∇iY

k +∇0C
k
irY

r = ∇iY
k + Lk

irY
r

DiYk = ∇iYk +∇0CkirY
r = ∇iY

k − LkirY
r

= ∇iY
k − Lr

kiYr (2.3)

The Riemann curvature Ry : TpM → TpM is a linear transformations on

tangent spaces, which is defined by

Ry = Ri
kdx

k ⊗ ∂

∂xi
(2.4)

Ri
k := 2

∂Gi

∂xi
− yj

∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
. (2.5)
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For a two-dimensional plane P ⊂ TpM and y ∈ TpM \ {0} such that P =

span{y, u}, the pair {P, y} is called a flag in TpM . The flag curvature K(P, y)

is defined by

K(P, y) :=
gy

(
u,Ry(u)

)
gy(y, y)gy(u, u)− gy(y, u)

2
.

We say that F is of scalar curvature if for any y ∈ TpM \{0} the flag curvature

K(P, y) = λ(y) is independent of P containing y. This is equivalent to the

following condition in a local coordinate system (xi, yi) in TM :

Ri
k = λF 2{δik − F−1Fykyi}.

If λ is a constant, then F is said to be of constant curvature.

Let (M,g) be a Finsler manifold. A vector field V = vi(x) ∂
∂xi on M is said

to be concircular if

LV̂ g = 2ρg,

∇ρ+ g(G, ∇̇ρ) = ϕg, (2.6)

where ∇ and ∇̇ are the Cartan horizontal and vertical covariant derivatives,

respectively, and ϕ is a smooth function on M . Here,

V̂ = vi(x)
∂

∂xi
+ yj(∂jv

i)
∂

∂yi

is the complete lift of V . For the other vector fields see [18].

In a local coordinate system equation (2.6) is written in the following form

∇kρl +Gj
k∇̇jρl = ϕgkl. (2.7)

The vector field V is said to be concircular, if its local flow preserves geodesic

circles. V is said to be a conformal vector field or an infinitesimal conformal

transformation, if it satisfies

LV̂ gij = 2ρ(x)gij ,

where ρ(x) is a real function on M called characteristic function of V . If ρ(x)

is constant or zero, then V is said to be homothetic or Killing.

In [4], Bidabad-Joharinad studied conformal vector fields on Finsler spaces.

They showed that every vector field on a Finsler space which keeps geodesic

circles invariant is conformal. They find a necessary and sufficient condition for

a vector field to keep geodesic circles invariant. This leads to a significant def-

inition of concircular vector fields on a Finsler space. They classified complete

Finsler spaces admitting a special conformal vector fields.
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In [23], Shen-Yang found a necessary and sufficient condition for a conformal

vector field to be concircular vector field. On a Finsler manifold, a conformal

vector field with the conformal factor ρ is concircular if and only if ρ satisfies

ρi|j = λgij , ρrCk
ri = 0, (2.8)

where

ρi := ρxi , ρi := girρr,

and λ = λ(x) is a scalar function onM and the symbol “|” means the horizontal

covariant derivative of Cartan (or Chern) connection.

Proposition 2.1. ([4]) Let V be a conformal vector field on the Finsler man-

ifold (M,g). Then the following holds

LV̂ (Ric)ij = −(n− 2)
(
∇i∇jρ− ρmȦm

ij

)
−Ψgij − yiΨj

−yjΨi −
1

2
F 2

(
∂̇i∂̇jΨ

)
, (2.9)

where Ψ = Ψ(x, y) is a homogeneous and scalar function on TM of degree zero

in y.

Now, we can prove the main result of this paper.

Proof of Theorem 1.1: If V is conformal vector field it satisfies

LV̂ gij = 2ρ(x)gij ,

where ρ = ρ(x) is a real function on M called characteristic function of V . On

the other hand according to the Proposition 2.1 we have (2.9). Contracting

(2.9) with yiyj implies that

LV̂ (Ric) = −(n− 2)
(
∇0∇0ρ(x)

)
−ΨF 2. (2.10)

(M,F ) is Einstein-Finsler manifold, that is

Ric = (n− 1)k(x)F 2

for scalar function k = k(x). Thus

Ricij = (n− 1)k(x)gij . (2.11)

Taking a Lie derivative of (2.11) along V̂ yields

LV̂ (Ricij) = (n− 1)
{
(LV̂ k(x))gij + k(x)LV̂ gij

}
= (n− 1)

{
V.k(x)gij + 2k(x)ρ(x)gij

}
. (2.12)

By (2.10) and (2.12), we get

−(n− 2)(∇0∇0ρ)−ΨF 2 = (n− 1)
{
V.k(x) + 2k(x)ρ(x)

}
F 2. (2.13)



120 Samaneh Saberali

(2.13) is equal to following

2(n− 1)k(x)ρ(x)F 2 + (n− 1)V.k(x)F 2 +ΨF 2 + (n− 2)(∇0∇0ρ) = 0. (2.14)

Taking twice vertical derivative of (2.14) implies that

2(n− 2)DiDjρ+Ψgij + 4(n− 1)k(x)ρ(x)gij +ΨijF
2

+2Ψiyj + 2Ψjyi = 0. (2.15)

According to (2.3), the following holds

DiDjρ = ∇iρj − Lr
ijρr. (2.16)

By putting (2.16) in (2.15) we obtain

2(n− 2)(∇iρj − Lr
ijρr) + Ψgij + 4(n− 1)k(x)ρ(x)gij

+ΨijF
2 + 2Ψiyj + 2Ψjyi = 0. (2.17)

By considering (2.8), we get the proof. □
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11. A. Deicke, Über die Finsler-Raume mit Ai = 0, Arch. Math. 4(1953), 45-51.

12. A. Fialkow, The conformal theory of curves. Trans. Am. Math. Society. 51(1942), 435-

497.

13. S. Ishihara, On infinitesimal concircular transformations, Kôdai Math. Sem. Rep.
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