Journal of Finsler Geometry and its Applications Vol. 2, No. 2 (2021), pp 114-121 DOI: 10.22098/jfga.2021.1373

On conformal vector fields on Einstein Finsler manifolds

Samaneh Saberali^a*

^aSchool of Mathematics, Institute for Research in Fundamental Sciences (IPM), Niavaran Bldg., Niavaran Square Tehran, Iran, P.O. Box: 19395-5746,

E-mail: samanehsaberali@gmail.com

Abstract. In this paper, we study conformal vector fields on Finsler manifolds. Let (M, \mathbf{g}) be an Einstein-Finsler manifold of dimension $n \geq 2$. Suppose that V is conformal vector field on M. We find a condition under which V reduces to a concircular vector field.

Keywords: Finsler metric, Einstein manifold, geodesic circle, concircular transformation, concircular vector field.

1. Introduction

A geodesic circle in an Euclidean space is a straight line or a circle with finite positive radius, which can be generalized naturally to Riemannian or Finsler geometry. Firstly, in 1940, Yano introduced concircular transformations on Riemannian manifolds [28]. Exactly, a geodesic circle in a Riemannian manifold, as well as in a Finsler manifold, is a curve with constant first Frenet curvature and zero second one. In other words, a geodesic circle is a torsion free curve with constant curvature. A concircular transformation on a Riemannian manifold is a conformal transformation which preserves geodesic circles ([12], [28]). Many researchers have developed the theory of concircular transformations to different contents ([13, 14, 25]). In 1970, Vogel showed that every concircular transformation on a Riemannian manifold is conformal [26]. This notion has been extended to Finsler geometry by Agrawal and Izumi [1]. Also, a similar result is proved by Bidabad-Shen in 2012 [5]. That is, every transformation

^{*}Samaneh Saberali

AMS 2020 Mathematics Subject Classification: 53B40, 53C30

which preserves geodesic circles reduces to a conformal transformation. So, by the modified definition, a diffeomorphism φ , between two Finsler manifolds (M, F) and (\tilde{M}, \tilde{F}) , is said to be concircular if it maps geodesic circles to geodesic circles. Also, two Finsler metrics defined on a manifold are said to be concircular if they have the same geodesic circles.

In [4], Bidabad-Joharinad studied conformal vector fields on Finsler spaces. They showed that every vector field on a Finsler space which keeps geodesic circles (concircular vector fiels) invariant is conformal. An arbitrary vector field $V = v^i(x)\partial/\partial x^i$ on a Finsler manifold (M, \mathbf{g}) is said to be concircular if

$$\mathcal{L}_{\hat{V}}\mathbf{g} = 2\rho\mathbf{g}, \quad \nabla\rho + \mathbf{g}(G, \nabla\rho) = \phi\mathbf{g}, \tag{1.1}$$

where, ∇ and $\dot{\nabla}$ are the Cartan horizontal and vertical covariant derivatives respectively. Also, $\rho = \rho(x)$ is a real function on M called characteristic function of V. Here, \hat{V} is the complete lift of V, i.e., $\hat{V} = v^i(x)\partial/\partial x^i + y^j(\partial_j v^i)\partial/\partial y^i$. They find a necessary and sufficient condition for a vector field to keep geodesic circles invariant. This leads to a significant definition of concircular vector fields on a Finsler space. They classified complete Finsler spaces admitting a special conformal vector fields.

The Liouville theorem explains that every conformal transformation between two open neighborhoods of *n*-dimensional Euclideann-space $(n \ge 3)$ is a combination of inversion and similarity. In [6], Brinkmann proved that a conformal transformation of an Einstein metric on the Riemannian manifold (M, \mathbf{g}) remains Einstein if and only if the gradient of the conformal characteristic function ρ of this transformations satisfies the ODE: $D_i D_j \rho + k \rho g_{ij} = 0$, where Dis the Levi-Civita connection and k = k(x) is a constant equal to the scalar curvature. In [28], Yano proved that the ODE holds for the characteristic function of a conformal transformation if and only if this transformation, which he called concircular, leaves invariant geodesic circles.

An *n*-dimensional Finsler manifold (M, F) is called an Einstein manifold if $\mathbf{Ric} = (n-1)k(x)F^2$, where k = k(x) is a scalar function on M. In this paper, we study conformal vector fields on Einstein Finsler manifold and prove the following.

Theorem 1.1. Let (M, F) be an Einstein Finsler manifold. Then every conformal vector field V on M reduces to a concircular vector field (1.1) if and only if there are scalar functions $\lambda = \lambda(x)$ and $\Psi = \Psi(x, y)$ on M and TM, respectively, such that the following hold:

$$2(n-2)(\lambda g_{ij} - \dot{A}^{r}{}_{ij}\rho_{r}) + \left[\Psi + 4(n-1)k\rho\right]g_{ij} + \Psi_{ij}F^{2} + 2(\Psi_{i}y_{j} + \Psi_{j}y_{i}) = 0, \qquad (1.2)$$

$$\rho^r C^k_{\ ri} = 0. \tag{1.3}$$

Samaneh Saberali

where C_{ri}^k and \dot{A}_{ij}^r denote the Cartan torsion and Landsberg curvature of F. Here, $y_i := FF_{y^i}$, $\rho_r := \partial \rho / \partial x^r$, $\rho^r := g^{ri}\rho_i$, $\Psi_i := \Psi_{y^i}$ and $\Psi_{ij} := \Psi_{y^i y^j}$.

2. Preliminary

Let M be an n-dimensional C^{∞} manifold. We denote by $\pi: TM \to M$ the bundle of tangent vectors and by $\pi_0: TM_0 \to M$ the fiber bundle of non-zero tangent vectors. A Finsler structure on M is a function $F: TM \to [0, \infty)$, with the following properties:

- i) *F* is C^{∞} on $TM_0 := TM \{0\};$
- ii) F(x, y) is positively homogeneous of degree one in y, i.e. $F(x, \lambda y) = \lambda F(x, y), \forall \lambda > 0$, where we denote an element of TM by (x, y);
- iii) The Hessian matrix of $F^2/2$ is positive definite on TM_0 ;

$$g_{ij} := \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j}.$$

A Finsler manifold (M, g) is a pair of a differential manifold M and a tensor field $g = (g_{ij})$ on TM which defined by a Finsler structure F.

Let $x \in M$ and $F_x := F|_{T_xM}$. To measure the non-Euclidean feature of F_x , define $\mathbf{C}_y : T_xM \times T_xM \times T_xM \to \mathbb{R}$ by

$$\mathbf{C}_y(u,v,w) := \frac{1}{2} \frac{d}{dt} \Big[\mathbf{g}_{y+tw}(u,v) \Big]|_{t=0}, \quad u,v,w \in T_x M.$$

The family $\mathbf{C} := {\mathbf{C}_y}_{y \in TM_0}$ is called the Cartan torsion. By definition, \mathbf{C}_y is a symmetric trilinear form on $T_x M$. It is well known that $\mathbf{C} = 0$ if and only if F is Riemannian.

The spray of a Finsler structure F is a vector field on TM as:

$$\mathbf{G} = y^i \frac{\partial}{\partial x^i} - 2G^i \frac{\partial}{\partial y^i}.$$
 (2.1)

where G^i are called the spray (or geodesic) coefficients

$$G^{i} = \frac{1}{4}g^{il} \left\{ F_{x^{m}y^{l}}^{2}y^{m} - F_{x^{l}}^{2} \right\}$$
(2.2)

and $(g^{ij}) := (g_{ij})^{-1}$. The geodesics of F are characterized by the second order differential equation:

$$\frac{d^2c^i}{dt^2} + 2G^i(c(t), \dot{c}(t)) = 0.$$

For $y \in T_x M_0$, define $\mathbf{B}_y : T_x M \times T_x M \times T_x M \to T_x M$ by $\mathbf{B}_y(u, v, w) := B^i_{ikl}(y) u^j v^k w^l \frac{\partial}{\partial x^i}|_x$ where

$$B^{i}{}_{jkl} := \frac{\partial^3 G^i}{\partial y^j \partial y^k \partial y^l}.$$

116

The quantity **B** is called the Berwald curvature of the Finsler metric F. We call a Finsler metric F a Berwald metric, if **B** = 0.

For $y \in T_x M$, define the Landsberg curvature $\dot{\mathbf{A}}_y : T_x M \times T_x M \times T_x M \to \mathbb{R}$ by

$$\dot{\mathbf{A}}_y(u,v,w) := -\frac{1}{2} \mathbf{g}_y \big(\mathbf{B}_y(u,v,w), y \big).$$

F is called a Landsberg metric if $\dot{\mathbf{A}}_y = 0$. By definition, every Berwald metric is a Landsberg metric.

We denote here by G_j^i the coefficients of nonlinear connection on TM, where

$$G_j^i := \frac{\partial G^i}{\partial y^j}.$$

By means of this nonlinear connection tangent space can be split into the horizontal and vertical subspaces with the corresponding basis $\{\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^i}\}$, which are related to the typical bases of TM, $\{\frac{\partial}{\partial x^i}, \frac{\partial}{\partial y^i}\}$, by

$$\frac{\delta}{\delta x^i} := \frac{\partial}{\partial x^i} - G^j_i \frac{\partial}{\partial y^j},$$

where

$$\Gamma^{i}_{jk} = \frac{1}{2}g^{il} \left(\frac{\delta g_{jl}}{\delta x^{k}} + \frac{\delta g_{kl}}{\delta x^{j}} - \frac{\delta g_{jk}}{\delta x^{i}}\right).$$

The components of the hh-curvature of Chern connection are expressed here by

$$R^{i}_{jkl} = \frac{\delta\Gamma^{i}_{jl}}{\delta x^{k}} + \frac{\delta\Gamma^{i}_{jk}}{\delta x^{l}} - \Gamma^{i}_{hk}\Gamma^{h}_{jl} - \Gamma^{i}_{hl}\Gamma^{h}_{jk}.$$

Here, we denote by ∇ and $\dot{\nabla}$, horizontal and vertical covariant derivatives in Cartan connection.

The following relations between Chern connection ∇ and Berwald connections D hold

$$D_i Y^k = \nabla_i Y^k + \nabla_0 C_{ir}^k Y^r = \nabla_i Y^k + L_{ir}^k Y^r$$

$$D_i Y_k = \nabla_i Y_k + \nabla_0 C_{kir} Y^r = \nabla_i Y^k - L_{kir} Y^r$$

$$= \nabla_i Y^k - L_{ki}^r Y_r$$
(2.3)

The Riemann curvature $R_y: T_pM \to T_pM$ is a linear transformations on tangent spaces, which is defined by

$$R_y = R_k^i dx^k \otimes \frac{\partial}{\partial x^i} \tag{2.4}$$

$$R_k^i := 2\frac{\partial G^i}{\partial x^i} - y^j \frac{\partial^2 G^i}{\partial x^j \partial y^k} + 2G^j \frac{\partial^2 G^i}{\partial y^j \partial y^k} - \frac{\partial G^i}{\partial y^j} \frac{\partial G^j}{\partial y^k}.$$
 (2.5)

Samaneh Saberali

For a two-dimensional plane $P \subset T_pM$ and $y \in T_pM \setminus \{0\}$ such that $P = span\{y, u\}$, the pair $\{P, y\}$ is called a flag in T_pM . The flag curvature $\mathbf{K}(P, y)$ is defined by

$$\mathbf{K}(P, y) := \frac{\mathbf{g}_y(u, R_y(u))}{\mathbf{g}_y(y, y)\mathbf{g}_y(u, u) - \mathbf{g}_y(y, u)^2}$$

We say that F is of scalar curvature if for any $y \in T_p M \setminus \{0\}$ the flag curvature $\mathbf{K}(P, y) = \lambda(y)$ is independent of P containing y. This is equivalent to the following condition in a local coordinate system (x^i, y^i) in TM:

$$R_k^i = \lambda F^2 \{ \delta_k^i - F^{-1} F_{y^k} y^i \}.$$

If λ is a constant, then F is said to be of constant curvature.

Let (M, \mathbf{g}) be a Finsler manifold. A vector field $V = v^i(x) \frac{\partial}{\partial x^i}$ on M is said to be concircular if

$$\mathcal{L}_{\hat{V}}\mathbf{g} = 2\rho\mathbf{g},$$

$$\nabla\rho + \mathbf{g}(G, \dot{\nabla}\rho) = \phi\mathbf{g},$$
 (2.6)

where ∇ and $\dot{\nabla}$ are the Cartan horizontal and vertical covariant derivatives, respectively, and ϕ is a smooth function on M. Here,

$$\hat{V} = v^i(x)\frac{\partial}{\partial x^i} + y^j(\partial_j v^i)\frac{\partial}{\partial y^i}$$

is the complete lift of V. For the other vector fields see [18].

In a local coordinate system equation (2.6) is written in the following form

$$\nabla_k \rho_l + G_k^j \dot{\nabla}_j \rho_l = \phi g_{kl}. \tag{2.7}$$

The vector field V is said to be concircular, if its local flow preserves geodesic circles. V is said to be a conformal vector field or an infinitesimal conformal transformation, if it satisfies

$$\mathcal{L}_{\hat{V}}g_{ij} = 2\rho(x)g_{ij},$$

where $\rho(x)$ is a real function on M called characteristic function of V. If $\rho(x)$ is constant or zero, then V is said to be homothetic or Killing.

In [4], Bidabad-Joharinad studied conformal vector fields on Finsler spaces. They showed that every vector field on a Finsler space which keeps geodesic circles invariant is conformal. They find a necessary and sufficient condition for a vector field to keep geodesic circles invariant. This leads to a significant definition of concircular vector fields on a Finsler space. They classified complete Finsler spaces admitting a special conformal vector fields.

118

In [23], Shen-Yang found a necessary and sufficient condition for a conformal vector field to be concircular vector field. On a Finsler manifold, a conformal vector field with the conformal factor ρ is concircular if and only if ρ satisfies

$$\rho_{i|j} = \lambda g_{ij}, \quad \rho^r C_{ri}^k = 0, \tag{2.8}$$

where

$$\rho_i := \rho_{x^i}, \quad \rho^i := g^{ir} \rho_r,$$

and $\lambda = \lambda(x)$ is a scalar function on M and the symbol "|" means the horizontal covariant derivative of Cartan (or Chern) connection.

Proposition 2.1. ([4]) Let V be a conformal vector field on the Finsler manifold (M, \mathbf{g}) . Then the following holds

$$\mathcal{L}_{\hat{V}}(\boldsymbol{Ric})_{ij} = -(n-2) \Big(\nabla_i \nabla_j \rho - \rho_m \dot{A}^m_{ij} \Big) - \Psi g_{ij} - y_i \Psi_j - y_j \Psi_i - \frac{1}{2} F^2 \Big(\dot{\partial}_i \dot{\partial}_j \Psi \Big),$$
(2.9)

where $\Psi = \Psi(x, y)$ is a homogeneous and scalar function on TM of degree zero in y.

Now, we can prove the main result of this paper.

Proof of Theorem 1.1: If V is conformal vector field it satisfies

$$\mathcal{L}_{\hat{V}}g_{ij} = 2\rho(x)g_{ij},$$

where $\rho = \rho(x)$ is a real function on M called characteristic function of V. On the other hand according to the Proposition 2.1 we have (2.9). Contracting (2.9) with $y^i y^j$ implies that

$$\mathcal{L}_{\hat{V}}(\mathbf{Ric}) = -(n-2) \Big(\nabla_0 \nabla_0 \rho(x) \Big) - \Psi F^2.$$
(2.10)

(M, F) is Einstein-Finsler manifold, that is

$$\mathbf{Ric} = (n-1)k(x)F^2$$

for scalar function k = k(x). Thus

$$\mathbf{Ric}_{ij} = (n-1)k(x)g_{ij}.$$
(2.11)

Taking a Lie derivative of (2.11) along \hat{V} yields

$$\mathcal{L}_{\hat{V}}(\mathbf{Ric}_{ij}) = (n-1) \Big\{ (\mathcal{L}_{\hat{V}}k(x))g_{ij} + k(x)\mathcal{L}_{\hat{V}}g_{ij} \Big\} = (n-1) \Big\{ V.k(x)g_{ij} + 2k(x)\rho(x)g_{ij} \Big\}.$$
(2.12)

By (2.10) and (2.12), we get

$$-(n-2)(\nabla_0 \nabla_0 \rho) - \Psi F^2 = (n-1) \Big\{ V \cdot k(x) + 2k(x)\rho(x) \Big\} F^2.$$
(2.13)

(2.13) is equal to following

$$2(n-1)k(x)\rho(x)F^{2} + (n-1)Vk(x)F^{2} + \Psi F^{2} + (n-2)(\nabla_{0}\nabla_{0}\rho) = 0.$$
(2.14)

Taking twice vertical derivative of (2.14) implies that

$$2(n-2)D_iD_j\rho + \Psi g_{ij} + 4(n-1)k(x)\rho(x)g_{ij} + \Psi_{ij}F^2 + 2\Psi_iy_j + 2\Psi_jy_i = 0.$$
(2.15)

According to (2.3), the following holds

$$D_i D_j \rho = \nabla_i \rho_j - L^r_{ij} \rho_r. \tag{2.16}$$

By putting (2.16) in (2.15) we obtain

$$2(n-2)(\nabla_i \rho_j - L_{ij}^r \rho_r) + \Psi g_{ij} + 4(n-1)k(x)\rho(x)g_{ij} + \Psi_{ij}F^2 + 2\Psi_i y_j + 2\Psi_j y_i = 0.$$
(2.17)

By considering (2.8), we get the proof.

Acknowledgment: This research was in part supported by a grant from IPM (1400510026). I would like to thank Dr Mahdi Rafie-Rad for his useful hints and comments.

References

- P. Agrawal, On the concircular geometry in Finsler spaces, Tensor N.S. 23(1972), 333-336.
- 2. H. Akbar-Zadeh, *Initiation to Global Finslerian Geometry*, North-Holland Mathematical Library, 2006.
- S. Bácsó and X. Cheng, Finsler conformal transformations and the curvature invariants, Publ. Math. Debrecen. 70(2007), 221-231.
- B. Bidabad and P. Joharinad, Conformal vector fields on Finsler spaces, Differ. Geom. App. 31(2013), 33–40.
- B. Bidabad and Z. Shen, Circle-preserving transformations in Finsler spaces, Publ. Math. Debr. 81(2012), 435-445.
- H.W. Brinkmann, Einstein spaces which are mapped conformally one achother, Math. Ann. 94(1925), 119145.
- B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific Publishing, Hackensack, 2011.
- G. Chen, X. Cheng and Y. Zou, On Canformal transformations between two (α, β) metrics, Diff. Geom. Appl. 31(2013), 300-307.
- X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169(2009), 317-340.
- S.S. Chern and Z. Shen, *Reimann-Finsler Geometry*, Nankai Tracts Math, World Scientific, 2005.
- 11. A. Deicke, Über die Finsler-Raume mit $A_i = 0$, Arch. Math. 4(1953), 45-51.
- A. Fialkow, The conformal theory of curves. Trans. Am. Math. Society. 51(1942), 435-497.
- S. Ishihara, On infinitesimal concircular transformations, Kôdai Math. Sem. Rep. 12(1960), 45-56.

120

- S. Ishihara and Y. Tashiro, On Riemannian manifolds admitting a concircular transformation, Math. J. Okayama Univ. 9 (1959), 19-47.
- W. Kühnel, and H-B. Rademacher, Conformal diffeomorphisms preserving the Ricci tensor, Proc. American. Math. Soc. 123(1995), 2841–2848.
- 16. W. Kühnel, Conformal Transformations between Einstein Spaces, 1988, Volume 12.
- M. Maleki and N. Sadeghzadeh, On conformally related spherically symmetric Finsler metrics, Int. J. Geom. Meth. Modern. Phys. 13(10) (2016), 1650118, 16 pages.
- 18. S. Masoumi, Projective vector fields on special (α, β) -metrics, Journal of Finsler Geometry and its Applications, 1(2) (2021), 83-93.
- X. Mo and H. Zhu, On a class of locally projectively flat general (α, β)-metrics, Bull. Korean. Math. Soc. 54(2017), 1293-1307.
- M. Obata, Conformal transformations of Riemannian manifolds, J. Differential Geom. 4(1970), 311-333.
- 21. S. F. Rutz, Symmetry in Finsler spaces, Contemporary Math. 196(1996), 289-300.
- Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, (2001).
- Z. Shen and G. Yang, On concircular transformations in Finsler geometry, Results. Math. 74(2019), 162.
- 24. Z. Shen and C. Yu, On a class of Einstein Finsler metrics, Int. J. Math. 25(04) (2014), 1450030.
- Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. math. Soc. 117(1965), 251-275.
- W.O.K. Vogel, Transformationen in Riemannschen Räumen, (German) Arch. Math. (Basel). 21 (1970-71), 641-645.
- Q. Xia, On a Class of Finsler Metrics of Scalar Flag Curvature, Results Math. 71 (2017), 483-507.
- 28. K. Yano, On concircular geometry I, Proc. Imp. Acad. (Tokyo), 16(1940), 195-200.
- C. Yu and H. Zhu, On a new class of Finsler metrics, Differ. Geom. Appl. 29(2011), 244-254.

Received: 07.07.2021 Accepted: 20.11.2021