Funk-type Finsler metrics

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran. sadeghihassan64@gmail.com

Abstract

In this paper, we introduce a class of Finsler metrics with interesting curvature properties. Then we find necessary and sufficient condition under which these Finsler metrics are locally dually flat and Douglas metrics.

Keywords


  • 1. R. Alexander, Planes for which the lines are the shortest paths between points, Illinois
    J. of Math., 22(1978), 177-190.
  • 2. R.V. Ambartzumian, A note on pseudo-metrics on the plane, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 37(1976), 145-155.
  • 3. S. B´acs´o and M. Matsumoto, On Finsler spaces of Douglas type, A generalization of
    notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
  • 4. L. Berwald, Parallel´ubertragung in allgemeinen R¨aumen. Atti Congr. Intern. Mat
    Bologna. 4(1928), 263-270.
  • 5. L. Berwald, Uber die n-dimensionalen Geometrien konstanter Kr¨ummung ¨ , in denen die
    Geraden die k¨urzesten sind, Math. Z. 30(1929), 449-469.
  • 6. W. Blaschke, Integral geometrie 11: Zur Variationsrechnung, Abh. Math. Sem. Univ.
    Hamburg, 11(1936), 359-366.
  • 7. R. Bryant, Finsler structures on the 2-sphere satisfying K = 1, Finsler Geometry, Contemporary Mathematics 196, Amer. Math. Soc., Providence, RI, 1996, 27-42.
  • 8. P. Funk, Uber Geometrien, bei denen die Geraden die K¨urzesten sind ¨ , Math. Ann.
    101(1929), 226-237.
  • 9. P. Funk, Uber zweidimensionale Finslersche R¨aume, insbesondere ¨uber solche mit ger- ¨
    adlinigen Extremalen und positiver konstanter Kr¨ummung, Math. Zeitschr. 40(1936),
    86-93.
  • 10. P. Funk, Eine Kennzeichnung der zweidimensionalen elliptischen Geometrie,
    Osterreichische Akad. der Wiss. Math., Sitzungsberichte Abteilung II ¨ 172(1963), 251-
    269.
  • 11. E. Guo, H. Liu and X. Mo, On spherically symmetric Finsler metrics with isotropic
    Berwald curvature. Int. J. Geom. Methods Mod. Phys., 10(10) (2013), 113.
  • 12. G. Hamel, Uber die Geometrieen in denen die Geraden die K¨urzesten sind ¨ , Math. Ann.
    57(1903), 231-264.
  • 13. D. Hilbert, Mathematical Problems, Bull. of Amer. Math. Soc. 37(2001), 407-436.
    Reprinted from Bull. Amer. Math. Soc. 8 (July 1902), 437-479.
  • 14. L Huang and X. Mo, On spherically symmetric Finsler metrics of scalar curvature, J.
    Geom. Phys., 62(11) (2012), 22792287.
  • 15. L. Huang and X. Mo, Projectively flat Finsler metrics with orthogonal invariance, Ann.
    Polon. Math. 107(3)(2013), 259270.
  • 16. O. Lungu, Some curvature properties in Randers spaces, Sci. Stud. Res. Ser. Math.
    Inform. 19(2) (2009), 301308.
  • 17. A.V. Pogorelov, Hilbert’s Fourth Problem, Winston & Wiley, New York, 1982.
  • 18. A. Rapcs´ak, Uber die bahntreuen Abbildungen metrisher R¨aume ¨ , Publ. Math. Debrecen,
    8(1961), 285-290.
  • 19. S. F. Rutz, Symmetry in Finsler spaces. Amer. Math. Soc, Providence, RI, 1996.
    20. H. Sadeghi, Finsler metrics with bounded Cartan torsion, Journal of Finsler Geometry
    and its Applications, 2(1) (2021), 51-62.
  • 21. H. Sadeghi, A special class of Finsler metrics, Journal of Finsler Geometry and its
    Applications, 1(1) (2020), 60-65.
  • 22. H. Sadeghi and M. Bahadori, On projectively related spherically symmetric metrics in
    Finsler geometry, Journal of Finsler Geometry and its Applications, 1(2) (2020), 39-53.
  • 23. Z. Shen, Projectively flat Finsler metrics of constant flag curvature, Trans of Amer.
    Math. Soc. 355(4)(2003), 1713-11728.
  • 24. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
  • 25. Z. Shen, Lectures on Finsler Geometry. Singapore, World Scientific, 2001.
  • 26. Z. Shen, Riemann-Finsler geometry with applications to information geometry, Chin.
    Ann. Math., 27(1) (2006), 73-94.
  • 27. Z. Shen, Projectively related Einstein metrics in Riemann-Finsler geometry, Math. Ann.
    320(2001), 625-647.
  • 28. Z. Shen, Funk metrics and R-flat sprays, unpublished (2001).
  • 29. L. Zhou, Projective spherically symmetric Finsler metrics with constant flag curvature
    in Rn. Geom. Dedicata. 158(1) (2012), 353364.
  • 30. Z.I. Szab´o, Hilbert’s fourth problem, I, Adv. in Math. 59(1986), 185-301.