Superconnections and distributions

Document Type : Original Article

Authors

1 Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran. eazizpour@guilan.ac.ir

2 Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran. dmatayi68@gmail.com

Abstract

The use of a distribution ‎‎D‎ ‎allows the presence of geometric structures such as almost product ‎structure‎‎,‎‎‎ so that the equivalent of these structures can be seen in ‎tangent ‎super‎manifolds. We define associated ‎adapted ‎linear‎ superconnections‎‎ ‎‎and find all ‎‎linear ‎super‎‎connections‎‎ on the ‎supermanifold ‎‎M ‎adapted to ‎‎D.

Keywords


  • 1. A. Bejancu and H. R. Farran, Vranceanu connections and foliations with bundle-like metrics, Proc. Indian Acad. Sci. (Math. Sci.), 118(1) (2008), 99-113.
  • 2. S. Garnier and T. Wurzbacher, The geodesic flow on a Riemannian supermanifold, J.
    Geom. Phys. 62(2011), 1489–1508.
  • 3. A. D. Lewis, Affine connections and distributions, Reports on Math. Phys. 42(1998) 135-
    164.
  • 4. B. Kostant, Graded manifolds, graded Lie theory, and prequantization, Differential Geometrical Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn, 1975),
    Lecture Notes in Mathematics, vol. 570, pp. 177-306 Springer, Berlin (1977).
  • 5. D. A. Leites, Introduction to the theory of supermanifolds, Uspekhi Mat. Nauk. 35(1980),
    3-57.
  • 6. V. S. Varadarajan, Supersymmetry for Mathematicians: An Introduction, Courant Lecture Notes, vol. 11. American Mathematical Society, Providence (2004).