Complete Ricci-Bourguignon solitons on Finsler manifolds

Document Type : Original Article

Author

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran. E-mail: azami@sci.ikiu.ac.ir, shahrood78@gmail.com

Abstract

In this paper, we study Ricci-Bourguignon soliton on Finsler manifolds and prove any forward complete shrinking Finslerian Ricci-Bourguignon soliton under some conditions on vector filed and scalar curvature is compact and its fundamental group is finite.

Keywords


  • 1. H. Akbar-Zadeh, Initiation to global Finslerian geometry, Netherlands: Elsevier Science,
    2006.
  • 2. M. Anastasiei, A generalization of Myers theorem, An. Stiint. Univ. ”Al. I. Cuza” Din
    Iasi (S.N.) Math. LIII (Supliment)(2007), 33-40.
  • 3. S. Azami and A. Razavi, Existence and uniqueness for solutions of Ricci flow on Finsler
    manifolds, Int. J. Geom. Methods Mod. Phys., 10 (2013), 21 pp.
  • 4. S. Azami and A. Razavi, Yamabe flow on Berwald manifolds, Int. J. Geom. Methods
    Mod. Phys., 12 (2015), 27 pp.
  • 5. D. Bao, On two curvature-driven problems in Riemann-Finsler geometry, Finsler geometry, Sapporo 2005-in memory of Makoto Matsumoto, 19C71, Adv. Stud. Pure Math.,48, Math. Soc. Japan, Tokyo, 2007.
  • 6. D. Bao, S. Chern and Z. Shen, An introduction to Riemannian Finsler geometry,
    Springer-Verlag, 2000.
  • 7. B. Bidabad and M. K. Sedaghat, Ricci flow on Finsler surfaces, J. Geom. Phys.
    129(2018), 238-254.
  • 8. B. Bidabad and M. Yar Ahmadi, On quasi-Einstein Finsler spaces, Bull. Iranian Math.
    Soc. 40(2014), 921-930.
  • 9. B. Bidabad and M. Yar Ahmadi, On complete Finslerian Yamabe solitons, Differ. Geom.
    Appl. 66(2019), 52-60.
  • 10. B. Bidabad and M. Yar Ahmadi, Complete Ricci solitons on Finsler manifolds, Science
    China Mathematics, 61(10)(2018), 1825-1832.
  • 11. A. M. Blaga and H. M. Tastan, Some results on almost η-Ricci-Bourguignon soliton,
    Journal of geometry and physics, 168(2021), 104316.
  • 12. J. P. Bourguignon, Ricci curvature and Einstein metrics, Global differential geometry
    and global analysis (Berlin,1979) Lecture nots in Math. vol. 838, Springer, Berlin, 1981,
    42-63.
  • 13. G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza and L. Mazzieri, The RicciBourguignon flow, Pacific J. Math. 287(2)(2015), 337-370.
  • 14. G. Catino, L. Mazzieri and S. Mongodi, Rigidity of gradient Einstein shrinkers, Communications in Contemporay Mathematics. 17(6)(2015), 1550046 (18 pages).
  • 15. S. Dwivedi, Some results on Ricci-Bourguignon solitons and almost solitons, Canadian
    Mathematical Bulletin, (2020), 1-14.
  • 16. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry,
    17 (2)(1982), 255-306.
  • 17. R.S. Hamilton, The Ricci flow on surfaces, Math. and general relativity (Santa Cruz,
    CA, 1986), Contemp. Math. 71(1988) 237-262.
  • 18. Z. M. Shen, Lectures on Finsler geometry, World Scientific publishing Co.2001, Indiana
    Univ. Math. J. 26 (1977), 459-472.
  • 19. M. Yar Ahmadi and B. Bidabad, On compact Ricci solitons in Finsler geometry, C. R.
    Acad. Sci. Paris Ser. I. 353(2015), 1023-1027.