Department of Mathematics and Stataistics, Faculty of Science, Dr. Rammanohar Lohia Avadh University, Ayodhya-224001, India. E-mail: mvermamath@gmail.com and mkvermabhu1986@gmail.com
In this paper, we study the Matsumoto change of m-th root Finsler metric. We find the necessary and sufficient conditions under which the transformed metric be locally dually flat. Also, we prove that for Matsumoto change of m-th root metric is locally projectively flat if and only if it is locally Minkowskian.
1.S.-I. Amari and H. Nagaoka, Methods of Information geometry, AMS Transl. Math. Monogr., Oxford Univ. Press, 2000.
2. V. Balan and N. Brinzei, Einstein equations for (h, v)-Berwald-Moor relativistic models, Balkan. J. Geom. Appl., 11 (2) (2006), 20-26.
3. L. Berwald, Parallel¨ubertragung in allgemeinen R¨aumen, Atti Congr. Intern Mat. Bologna, 4 (1928), 263-270.
4. G. Hamel, Uber die Geometrien, in denen die Geraden die K¨urtzesten sind ¨ , Math. Ann. 57(1903), 231-264.
5. B. Li and Z. Shen, On projectively flat fourth root metrics, Canad. Math. Bull., 55 (2012), 138-145.
6. M. Matsumoto, The Berwald connection of Finsler with an (α, β)-metric, Tensor N. S., 50 (1991), 18-21.
7. M. Matsumoto, A slope of a mountain is a Finsler surface with respect to a time measure, J. Math. Kyoto. Univ., 29 (1989), 17-25.
8. A. Rapcs´ak, Uber die bahntreuen Abbildungen metrisher R¨aume ¨ , Publ. Math. Debrecen, 8(1961), 285-290.
9. Z. Shen, Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math., 27 (2006), 73-94.
10. H. Shimada, On Finsler spaces with metric L := m√ai1i2...imyi1 yi2 ...yim, Tensor, N. S,33 (1979), 365-372.
11. H. Shimada and S. V. Sabau, An introduction to Matsumoto metric, Nonlinear Analysis: Real World Applications, 63 (2005), 165-168.
12. A. Tayebi and B. Najafi, On m-th root Finsler metrics, J. Geom. Phys., 61 (2011), 1479-1484.
13. T. Tabatabaeifar, On generalized 4-th root Finsler metrics, Journal of Finsler Geometry and its Applications, 1(1) (2020), 54-59.
14. A. Tayebi, T. Tabatabaeifar and E. Peyghan, On Kropina change for m-th root Finsler metrics, Ukrainian Mathematical Journal, 66 (1) (2014), 160-164.
Kumar, M. (2021). Locally dually flatness and locally projectively flatness of Matsumoto change with m-th root Finsler metrics. Journal of Finsler Geometry and its Applications, 2(1), 31-39. doi: 10.22098/jfga.2021.1261
MLA
Manoj Kumar. "Locally dually flatness and locally projectively flatness of Matsumoto change with m-th root Finsler metrics", Journal of Finsler Geometry and its Applications, 2, 1, 2021, 31-39. doi: 10.22098/jfga.2021.1261
HARVARD
Kumar, M. (2021). 'Locally dually flatness and locally projectively flatness of Matsumoto change with m-th root Finsler metrics', Journal of Finsler Geometry and its Applications, 2(1), pp. 31-39. doi: 10.22098/jfga.2021.1261
VANCOUVER
Kumar, M. Locally dually flatness and locally projectively flatness of Matsumoto change with m-th root Finsler metrics. Journal of Finsler Geometry and its Applications, 2021; 2(1): 31-39. doi: 10.22098/jfga.2021.1261