Locally dually flatness and locally projectively flatness of Matsumoto change with m-th root Finsler metrics

Document Type : Original Article

Author

Department of Mathematics and Stataistics, Faculty of Science, Dr. Rammanohar Lohia Avadh University, Ayodhya-224001, India. E-mail: mvermamath@gmail.com and mkvermabhu1986@gmail.com

Abstract

In this paper, we study the Matsumoto change of m-th root Finsler metric. We find the necessary and sufficient conditions under which the transformed metric be locally dually flat. Also, we prove that for Matsumoto change of m-th root metric is locally projectively flat if and only if it is locally Minkowskian.

Keywords


  • 1.S.-I. Amari and H. Nagaoka, Methods of Information geometry, AMS Transl. Math.
    Monogr., Oxford Univ. Press, 2000.
  • 2. V. Balan and N. Brinzei, Einstein equations for (h, v)-Berwald-Moor relativistic models,
    Balkan. J. Geom. Appl., 11 (2) (2006), 20-26.
  • 3. L. Berwald, Parallel¨ubertragung in allgemeinen R¨aumen, Atti Congr. Intern Mat.
    Bologna, 4 (1928), 263-270.
  • 4. G. Hamel, Uber die Geometrien, in denen die Geraden die K¨urtzesten sind ¨ , Math. Ann.
    57(1903), 231-264.
  • 5. B. Li and Z. Shen, On projectively flat fourth root metrics, Canad. Math. Bull., 55
    (2012), 138-145.
  • 6. M. Matsumoto, The Berwald connection of Finsler with an (α, β)-metric, Tensor N. S.,
    50 (1991), 18-21.
  • 7. M. Matsumoto, A slope of a mountain is a Finsler surface with respect to a time measure,
    J. Math. Kyoto. Univ., 29 (1989), 17-25.
  • 8. A. Rapcs´ak, Uber die bahntreuen Abbildungen metrisher R¨aume ¨ , Publ. Math. Debrecen,
    8(1961), 285-290.
  • 9. Z. Shen, Riemann-Finsler geometry with applications to information geometry, Chin.
    Ann. Math., 27 (2006), 73-94.
  • 10. H. Shimada, On Finsler spaces with metric L := m√ai1i2...imyi1 yi2 ...yim, Tensor, N. S,33 (1979), 365-372.
  • 11. H. Shimada and S. V. Sabau, An introduction to Matsumoto metric, Nonlinear Analysis:
    Real World Applications, 63 (2005), 165-168.
  • 12. A. Tayebi and B. Najafi, On m-th root Finsler metrics, J. Geom. Phys., 61 (2011),
    1479-1484.
  • 13. T. Tabatabaeifar, On generalized 4-th root Finsler metrics, Journal of Finsler Geometry
    and its Applications, 1(1) (2020), 54-59.
  • 14. A. Tayebi, T. Tabatabaeifar and E. Peyghan, On Kropina change for m-th root Finsler
    metrics, Ukrainian Mathematical Journal, 66 (1) (2014), 160-164.