On semi C-reducible Finsler spaces

Document Type : Original Article

Author

Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran E-mail: aheydari@modares.ac.ir

Abstract

In this paper, we study the class of semi-C-reducible Finsler manifolds. Under a condition, we prove that every semi-C-reducible Finsler spaces with a semi-P-reducible metric has constant characteristic scalar along Finslerian geodesics or reduces to a Landsberg metric. By this fact, we characterize the class of semi-P-reducible spaces equipped with an (α, β)-metric. More precisely, we proved that such metrics are Berwaldian B= 0,or have vanishing S-curvature S= 0 or satisfy a well-known ODE. This yields an extension of Tayebi-Najafi’s classification for 3-dimensional (α, β)-metric of Landsberg-type.

Keywords


  • 1. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J.
    Math. 169(2009), 317-340.
  • 2. Y. Ichijy¯o, Finsler spaces modeled on a Minkowski space, J. Math. Kyoto. Univ. 16(1976),
    639-652.
  • 3. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces, Tensor.
    N. S. 32(1978), 225-230.
  • 4. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important
    tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
  • 5. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992),
    43-84.
  • 6. B. Najafi and A. Tayebi, Some curvature properties of (α, β)-metrics, Bull. Math. Soc.
    Sci. Math. Roumanie, Tome 60 (108) No. 3, (2017), 277-291.
  • 7. T. Rajabi, On the norm of Cartan torsion of two classes of (α, β)-metrics, Journal of
    Finsler Geometry and its Applications, 1(2020), 66-72.
  • 8. S. C. Rastogi, On certain P-reducible Finsler spaces, Ganita. 56(2005), 55-64.
  • 9. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
  • 10. A. Tayebi, On the class of generalized Landsbeg manifolds, Periodica. Math. Hungarica.
    72(2016), 29-36.
  • 11. A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α, β)-metrics, Indagationes Mathematicae, 27(2016), 670-683.
  • 12. A. Tayebi and B. Najafi, Classification of 3-dimensional Landsbergian (α, β)-mertrics,
    Publ. Math. Debrecen, 96(2020), 45-62.
  • 13. A. Tayebi and B. Najafi, The weakly generalized unicorns in Finsler geometry. Sci. China
    Math. (2021). https://doi.org/10.1007/s11425-020-1853-5.
  • 14. A. Tayebi and B. Najafi, On homogeneous Landsberg surfaces, J. Geom. Phys. 168
    (2021), 104314.
  • 15. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ.
    Geom. Appl. 62(2019), 253-266.
  • 16. A. Tayebi and M. Razgordani, Four families of projectively flat Finsler metrics with
    K = 1 and their non-Riemannian curvature properties, Rev. R. Acad. Cienc. Exactas
    F´ıs. Nat. Ser. A Math. RACSAM, 112(2018), 1463-1485.
  • 17. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing Scurvature, Ann. Polon. Math. 114(1) (2015), 67-79.
  • 18. A. Tayebi and H. Sadeghi, On generalized Douglas-Weyl (α, β)-metrics, Acta. Math.
    Sinica. English. Series. 31(2015), 1611-1620.
  • 19. A. Tayebi and H. Sadeghi, On Cartan torsion of Finsler metrics, Publ. Math. Debrecen.
    82(2) (2013), 461-471.