In this paper, we study the class of semi-C-reducible Finsler manifolds. Under a condition, we prove that every semi-C-reducible Finsler spaces with a semi-P-reducible metric has constant characteristic scalar along Finslerian geodesics or reduces to a Landsberg metric. By this fact, we characterize the class of semi-P-reducible spaces equipped with an (α, β)-metric. More precisely, we proved that such metrics are Berwaldian B= 0,or have vanishing S-curvature S= 0 or satisfy a well-known ODE. This yields an extension of Tayebi-Najafi’s classification for 3-dimensional (α, β)-metric of Landsberg-type.
14. A. Tayebi and B. Najafi, On homogeneous Landsberg surfaces, J. Geom. Phys. 168 (2021), 104314.
15. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ. Geom. Appl. 62(2019), 253-266.
16. A. Tayebi and M. Razgordani, Four families of projectively flat Finsler metrics with K = 1 and their non-Riemannian curvature properties, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM, 112(2018), 1463-1485.
17. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing Scurvature, Ann. Polon. Math. 114(1) (2015), 67-79.
18. A. Tayebi and H. Sadeghi, On generalized Douglas-Weyl (α, β)-metrics, Acta. Math. Sinica. English. Series. 31(2015), 1611-1620.
19. A. Tayebi and H. Sadeghi, On Cartan torsion of Finsler metrics, Publ. Math. Debrecen. 82(2) (2013), 461-471.
Heydari, A. (2020). On semi C-reducible Finsler spaces. Journal of Finsler Geometry and its Applications, 1(2), 130-142. doi: 10.22098/jfga.2020.1246
MLA
Abbas Heydari. "On semi C-reducible Finsler spaces", Journal of Finsler Geometry and its Applications, 1, 2, 2020, 130-142. doi: 10.22098/jfga.2020.1246
HARVARD
Heydari, A. (2020). 'On semi C-reducible Finsler spaces', Journal of Finsler Geometry and its Applications, 1(2), pp. 130-142. doi: 10.22098/jfga.2020.1246
VANCOUVER
Heydari, A. On semi C-reducible Finsler spaces. Journal of Finsler Geometry and its Applications, 2020; 1(2): 130-142. doi: 10.22098/jfga.2020.1246