Journal of Finsler Geometry and its Applications Vol. 1, No. 2 (2020), pp 130-142 DOI: 10.22098/jfga.2020.1246

On semi-*C*-reducible Finsler spaces

Abbas Heydari^a*

^aDepartment of Pure Mathematics Faculty of Mathematical Sciences, Tarbiat Modares University Tehran, Iran

E-mail: aheydari@modares.ac.ir

Abstract. In this paper, we study the class of semi-C-reducible Finsler manifolds. Under a condition, we prove that every semi-C-reducible Finsler spaces with a semi-P-reducible metric has constant characteristic scalar along Finslerian geodesics or reduces to a Landsberg metric. By this fact, we characterize the class of semi-P-reducible spaces equipped with an (α, β) -metric. More precisely, we proved that such metrics are Berwaldian $\mathbf{B} = 0$, or have vanishing S-curvature $\mathbf{S} = 0$ or satisfy a well-known ODE. This yields an extension of Tayebi-Najafi's classification for 3-dimensional (α, β) -metric of Landsberg-type.

Keywords: 3-dimensional Finsler space, weakly Landsberg metric.

1. INTRODUCTION

Let (M, F) be a Finsler manifold and $c : [a, b] \to M$ be a piecewise C^{∞} curve from c(a) = p to c(b) = q. For every $u \in T_pM$, let us define

$$P_c: T_p M \to T_q M$$

by $P_c(u) := U(b)$, where U = U(t) is the parallel vector field along c such that U(a) = u. P_c is called the parallel translation along c. In [2], Ichijyō showed that if F is a Berwald metric, then all tangent spaces (T_xM, F_x) are linearly isometric to each other. Let us consider the Riemannian metric \hat{g}_x on

^{*}Corresponding Author

AMS 2020 Mathematics Subject Classification: 53B40, 53C30

 $T_x M_0 := T_x M - \{0\}$ which is defined by

$$\hat{g}_x := g_{ij}(x, y) \delta y^i \otimes \delta y^j, \quad g_{ij} := \frac{1}{2} \left[F^2 \right]_{y^i y^j}$$

is the fundamental tensor of F and $\{\delta y^i := dy^i + N_j^i dx^j\}$ is the natural coframe on $T_x M$ associated with the natural basis $\{\partial/\partial x^i|_x\}$ for $T_x M$. If F is a Landsberg metric, then for any C^{∞} curve c, P_c preserves the induced Riemannian metrics on the tangent spaces, i.e., $P_c: (T_p M, \hat{g}_p) \to (T_q M, \hat{g}_q)$ is an isometry. By definition, every Berwald metric is a Landsberg metric, but the converse may not hold. Thus, we get the following

 $\{Berwald metrics\} \subseteq \{Landsberg metrics\}.$

Let (M, F) be an *n*-dimensional Finsler manifold. The second derivatives of F_x^2 at $y \in T_x M_0$ is an inner product \mathbf{g}_y on $T_x M$. The third order derivatives of F_x^2 at $y \in T_x M_0$ is a symmetric trilinear forms \mathbf{C}_y on $T_x M$. We call \mathbf{g}_y and \mathbf{C}_y the fundamental form and the Cartan torsion, respectively.

Set $\mathbf{I}_y := \sum_{i=1}^n \mathbf{C}_y(e_i, e_i, \cdot)$ where $\{e_i\}$ is an orthonormal basis for $(T_x M, \mathbf{g}_y)$. \mathbf{I}_y is called the mean Cartan torsion of F. A Finsler metric F is called semi-C-reducible if its Cartan tensor is given by

$$C_{ijk} = \frac{P}{n+1} \Big\{ h_{ij}I_k + h_{jk}I_i + h_{ki}I_j \Big\} + \frac{Q}{||\mathbf{I}||^2} I_i I_j I_k,$$

where P = P(x, y) and Q = Q(x, y) are scalar function on TM, h_{ij} is the angular metric, and $||\mathbf{I}||^2 = g^{ij}I_iI_j$. The function P is called characteristic scalar of F. By definition, we have P + Q = 1. In the case of P = 1, F reduces to a C-reducible Finsler metric

$$C_{ijk} = \frac{1}{n+1} \Big\{ h_{ij}I_k + h_{jk}I_i + h_{ki}I_j \Big\}.$$

In [4], Matsumoto proved that any Randers metric is C-reducible. Later on, Matsumoto-Hōjō proves that the converse is true too [3]. A Randers metric $F = \alpha + \beta$ is just a Riemannian metric α perturbated by a one form β . Randers metrics have important applications both in mathematics and physics.

The rate of change of \mathbf{C}_y along geodesics is the Landsberg curvature \mathbf{L}_y on $T_x M$ for any $y \in T_x M_0$. F is said to be Landsbergian if $\mathbf{L} = 0$. There is a weaker notion of metrics- weakly Landsberg metrics. Set $\mathbf{J}_y := \sum_{i=1}^n \mathbf{L}_y(e_i, e_i, \cdot)$. Then \mathbf{J}_y is called the mean Landsberg curvature. A Finsler metric F is said to be weakly Landsbergian if $\mathbf{J} = 0$. As a generalization of C-reducible metrics, Matsumoto-Shimada introduced the notion of L-reducible metrics [5]. Indeed, F is said to be L-reducible Finsler metric if its Landsberg curvature can be written as the follows

$$L_{ijk} = \frac{1}{n+1} \Big\{ J_i h_{jk} + J_j h_{ik} + J_k h_{ij} \Big\}.$$
 (1.1)

As an extension of L-reducible metric, Rastogi introduced a new class of Finsler spaces named by semi-P-reducible spaces which contains the notion of Creducible and L-reducible metrics, as a special case [8]. A Finsler metric Fis called semi-P-reducible if its Landsberg tensor is given by

$$L_{ijk} = \lambda \left\{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \right\} + 3\mu J_i J_j J_k, \qquad (1.2)$$

where $\lambda = \lambda(x, y)$ and $\mu = \mu(x, y)$ are scalar functions on TM.

In this paper, we prove that every semi-C-reducible Finsler spaces with a semi-P-reducible metric has constant characteristic scalar along Finslerian geodesics or reduces to a Landsberg metric. More precisely, we prove the following.

Theorem 1.1. Let (M, F) be semi-C-reducible manifold of dimension $n \ge 3$. Suppose that F is a semi-P-reducible Finsler metric such that

$$3\mu ||\mathbf{J}||^2 + (n+1)\lambda \neq 1.$$
(1.3)

Then one of the following holds

- (1) F is a Landsberg metric;
- (2) Characteristic scalar of F is a constant along any Finslerian geodesics.

Then we focus on semi-P-reducible manifold equipped with an (α, β) -metric and prove the following.

Theorem 1.2. Let (M, F) be semi-P-reducible manifold of dimension $n \ge 3$ equipped with an (α, β) -metric $F = \alpha \phi(s)$, $s = \beta/\alpha$, such that

$$3\mu ||\mathbf{J}||^2 + (n+1)\lambda \neq 1.$$
 (1.4)

Then one of the following holds

- (1) F is a Berwald metric;
- (2) S = 0;
- (3) $\phi = \phi(s)$ is given by the ODE

$$\phi^{4-4c}(\phi - s\phi')^{4-c} \left[\phi - s\phi' + (b^2 - s^2)\phi'' \right]^{-c} = e^{k_0}, \tag{1.5}$$

where c is a nonzero real constant, k_0 is a real number and $b := ||\beta||_{\alpha}$.

Every Landsberg metric is a special semi-P-reducible Finsler metric with $\lambda = \mu = 0$. Then Theorem 1.2 is an extension of Tayebi-Najafi's Theorem about the classification of the class of 3-dimensional (α, β) -metrics with vanishing Landsberg curvature in [12].

2. Preliminaries

A Finsler metric on a manifold M is a nonnegative function F on TM having the following properties: (i) F is C^{∞} on $TM \setminus \{0\}$; (ii) $F(\lambda y) = \lambda F(y), \forall \lambda > 0,$ $y \in TM$; and (iii) for each $y \in T_x M$, the following quadratic form \mathbf{g}_y on $T_x M$ is positive definite,

$$\mathbf{g}_{y}(u,v) := \frac{1}{2} \Big[F^{2}(y+su+tv) \Big] \Big|_{s,t=0}, \qquad u,v \in T_{x}M.$$
(2.1)

At each point $x \in M$, $F_x := F|_{T_xM}$ is an Euclidean norm if and only if \mathbf{g}_y is independent of $y \in T_xM \setminus \{0\}$.

To measure the non-Euclidean feature of F_x , define $\mathbf{C}_y: T_xM \times T_xM \times T_xM \to \mathbb{R}$ by

$$\mathbf{C}_{y}(u,v,w) := \frac{1}{2} \frac{d}{dt} \Big[\mathbf{g}_{y+tw}(u,v) \Big] \Big|_{t=0}, \qquad u,v,w \in T_{x}M.$$
(2.2)

The family $\mathbf{C} := {\mathbf{C}_y}_{y \in TM \setminus \{0\}}$ is called the *Cartan torsion*. Obviously, F is Riemannian metric if and only if $\mathbf{C}_y = 0$ (see [19]). The norm of Cartan torsion \mathbf{C} at point $x \in M$ is defined by

$$\|\mathbf{C}\|_{x} := \sup_{y,v \in T_{x}M \setminus \{0\}} \frac{F(x,y)|\mathbf{C}_{y}(v,v,v)|}{[\mathbf{g}_{y}(v,v)]^{\frac{3}{2}}}.$$

and the norm of Cartan torsion on M is defined by $\|\mathbf{C}\| := \sup_{x \in M} \|\mathbf{C}\|_x$.

Taking a trace of Cartan torsion yields the mean Cartan torsion \mathbf{I}_y It is defined by:

$$\mathbf{I}_{y}(u) := g^{ij}(y) \ \mathbf{C}_{y}\left(u, \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)$$

The norm of mean Cartan torsion **I** at point $x \in M$ is defined by

$$\|\mathbf{I}\|_{x} := \sup_{y,v \in T_{x}M \setminus \{0\}} \frac{F(x,y)|\mathbf{I}_{y}(v)|}{[\mathbf{g}_{y}(v,v)]^{\frac{1}{2}}}.$$
(2.3)

and the norm of mean Cartan torsion on M is defined by $\|\mathbf{I}\| := \sup_{x \in M} \|\mathbf{I}\|_x$.

For an *n*-dimensional Finsler manifold (M, F), there is a special vector field **G** which is induced by F on $TM_0 := TM \setminus \{0\}$. In a standard coordinates (x^i, y^i) for TM_0 , it is given by

$$\mathbf{G} = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i},$$

where

$$G^{i}(x,y) := \frac{g^{il}}{4} \left\{ \frac{\partial^{2} F^{2}}{\partial x^{k} \partial y^{l}} y^{k} - \frac{\partial F^{2}}{\partial x^{l}} \right\}$$

The homogeneous scalar functions G^i are called the geodesic coefficients of F. The vector field **G** is called the associated spray to (M, F).

For a non-zero vector $y \in T_x M_0$, define $\mathbf{B}_y : T_x M \times T_x M \times T_x M \to T_x M$ by $\mathbf{B}_y(u, v, w) := B^i_{ikl}(y) u^j v^k w^l \frac{\partial}{\partial x^i}|_x$, where

$$B^{i}_{\ jkl} := \frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}}.$$

 ${\bf B}$ is called the Berwald curvature and F is called a Berwald metric if ${\bf B}={\bf 0}.$

There is another quantity that characterize Berwald metrics. Let us define $\bar{\mathbf{C}}_y: T_x M \times T_x M \times T_x M \times T_x M \to \mathbb{R}$ by $\bar{\mathbf{C}}_y(u, v, w, z) = \bar{C}_{ijkl} u^i v^j w^k z^l$, where

$$\bar{C}_{ijkl} := C_{ijk|l}.$$

It is proved that for a Finsler metric, $\mathbf{B} = 0$ if and only if $\mathbf{\bar{C}} = 0$ (see Lemma 10.1.1 in [9]).

The horizontal covariant derivatives of **C** along geodesics give rise to the Landsberg curvature $\mathbf{L}_y: T_x M \otimes T_x M \otimes T_x M \to \mathbb{R}$ defined by

$$\mathbf{L}_y(u, v, w) := L_{ijk}(y)u^i v^j w^k,$$

where

$$L_{ijk} := C_{ijk|s} y^s,$$

 $u = u^i \partial / \partial x^i |_x$, $v = v^i \partial / \partial x^i |_x$ and $w = w^i \partial / \partial x^i |_x$. The family $\mathbf{L} := {\mathbf{L}_y}_{y \in TM_0}$ is called the Landsberg curvature. A Finsler metric is called a Landsberg metric if $\mathbf{L} = 0$.

For
$$y \in T_x M$$
, define $\mathbf{J}_y : T_x M \to \mathbb{R}$ by $\mathbf{J}_y(u) := J_i(y)u^i$, where $J_i := g^{jk} L_{ijk}$.

By definition, $\mathbf{J}_y(y) = 0$. **J** is called the mean Landsberg curvature or Jcurvature. A Finsler metric F is called a weakly Landsberg metric if $\mathbf{J}_y = 0$. By definition, every Landsberg metric is a weakly Landsberg metric. Mean Landsberg curvature can be defined as following

$$J_i := y^m \frac{\partial I_i}{\partial x^m} - I_m \frac{\partial G^m}{\partial y^i} - 2G^m \frac{\partial I_i}{\partial y^m}.$$

By definition, we get

$$\mathbf{J}_{y}(u) := \frac{d}{dt} \Big[\mathbf{I}_{\dot{\sigma}(t)} \big(U(t) \big) \Big]_{t=0},$$

where $y \in T_x M$, $\sigma = \sigma(t)$ is the geodesic with $\sigma(0) = x$, $\dot{\sigma}(0) = y$ and U(t), V(t), W(t) are linearly parallel vector fields along σ with U(0) = u, V(0) = v, W(0) = w. Then the mean Landsberg curvature \mathbf{J}_y is the rate of change of \mathbf{I}_y along geodesics for any $y \in T_x M_0$. It has been shown that on a weakly Landsberg manifold, the volume function Vol(x) is a constant.

The norm of mean Landsberg **J** at point $x \in M$ is defined by

$$\|\mathbf{J}\|_{x} := \sup_{y,v \in T_{x}M \setminus \{0\}} \frac{F(x,y)|\mathbf{J}_{y}(v)|}{[\mathbf{g}_{y}(v,v)]^{\frac{1}{2}}}.$$
(2.4)

and the norm of mean Landsberg torsion on M is defined by $\|\mathbf{J}\|:=\sup_{x\in M}\|\mathbf{J}\|_x$

The Busemann-Hausdorff volume form $dV_F = \sigma_F(x)dx^1 \wedge \cdots \wedge dx^n$ related to F is defined by

$$\sigma_F(x) := \frac{\operatorname{Vol}(\mathbb{B}^n(1))}{\operatorname{Vol}\left\{(y^i) \in \mathbb{R}^n \mid F\left(y^i \frac{\partial}{\partial x^i}|_x\right) < 1\right\}},$$

where $\mathbb{B}^n(1)$ denotes the unit ball in \mathbb{R}^n .

The distortion $\tau = \tau(x, y)$ on TM associated with the Busemann-Hausdorff volume form on M, i.e., $dV_{BH} = \sigma(x)dx^1 \wedge dx^2 \dots \wedge dx^n$, is defined by following

$$\tau(x,y) = \ln \frac{\sqrt{\det(g_{ij}(x,y))}}{\sigma(x)}$$

Then the S-curvature is defined by

$$\mathbf{S}(x,y) = \frac{d}{dt} \left[\tau \left(c(t), \dot{c}(t) \right) \right]_{t=0}$$

where c = c(t) is the geodesic with c(0) = x and $\dot{c}(0) = y$. In a local coordinates, the S-curvature is given by

$$\mathbf{S} = \frac{\partial G^m}{\partial y^m} - y^m \frac{\partial (\ln \sigma)}{\partial x^m}.$$

A Finsler metric ${\cal F}$ on an n -dimensional manifold M is said to be of isotropic S-curvature if

$$\mathbf{S} = (n+1)\sigma F_{\mathbf{s}}$$

where $\sigma = \sigma(x)$ is a scalar function on M.

Let $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ be a Riemannian metric and $\beta = b_i(x)y^i$ be a 1-form on an *n*-dimensional manifold *M*. Using α and β one can define a function on TM_0 as follows

$$F = \alpha \phi(s), \qquad s := \frac{\beta}{\alpha}.$$

where $\phi = \phi(s)$ is a C^{∞} positive function on an open interval $(-b_0, b_0)$ (see [7], [10], [11], [15], [16], [17] and [18]). The norm $\|\beta_x\|_{\alpha}$ of β with respect to α is defined by

$$\|\beta_x\|_{\alpha} := \sqrt{a^{ij}(x)b_i(x)b_j(x)}.$$

In order to define F, β must satisfy the condition $\|\beta_x\|_{\alpha} < b_0$ for all $x \in M$. For an (α, β) -metric, let us define $b_{i|j}$ by $b_{i|j}\theta^j := db_i - b_j\theta_i^j$, where $\theta^i := dx^i$ and $\theta_i^j := \Gamma_{ik}^j dx^k$ denote the Levi-Civita connection form of α . Let

$$\begin{split} r_{ij} &:= \frac{1}{2} (b_{i|j} + b_{j|i}), \quad s_{ij} := \frac{1}{2} (b_{i|j} - b_{j|i}), \\ r_{i0} &:= r_{ij} y^j, \quad r_{00} := r_{ij} y^i y^j, \quad r_j := b^i r_{ij}, \quad s_{i0} := s_{ij} y^j, \\ s_j &:= b^i s_{ij}, \quad r_0 := r_j y^j, \quad s_0 := s_j y^j. \end{split}$$

Let us define

$$Q := \frac{\phi'}{\phi - s\phi'}, \Delta := 1 + sQ + (b^2 - s^2)Q',$$
(2.5)

$$\Phi := -(Q - sQ')(n\Delta + 1 + sQ) - (b^2 - s^2)(1 + sQ)Q''.$$
 (2.6)

In [1], Cheng-Shen characterize (α, β) -metrics with isotropic S-curvature.

Theorem A. Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be an non-Riemannian (α, β) -metric on a manifold and $b := \|\beta_x\|_{\alpha}$. Suppose that F is not a Finsler metric of Randers type. Then F is of isotropic S-curvature, $\mathbf{S} = (n+1)cF$, if and only if one of the following holds

(i) β satisfies

$$r_{ij} = \varepsilon (b^2 a_{ij} - b_i b_j), \quad s_j = 0, \tag{2.7}$$

where $\varepsilon = \varepsilon(x)$ is a scalar function, and $\phi = \phi(s)$ satisfies

$$\Phi = -2(n+1)k\frac{\phi\Delta^2}{b^2 - s^2},$$
(2.8)

where k is a constant. In this case, S = (n+1)cF with $c = k\varepsilon$. (ii) β satisfies

$$r_{ij} = 0, \qquad s_j = 0. \tag{2.9}$$

In this case, S = 0, regardless of choices of a particular ϕ .

3. Proof of Theorem 1.1

It is proved that every C-reducible metric with vanishing Landsberg curvature is a Berwald metric. On the other hand, the class of semi-P-reducible metrics contain the class of C-reducible metrics as a special case. Thus it is natural to find some conditions on semi-P-reducible metrics, under which these metrics reduced to Berwald metrics. Therefore in this section, we study semi-P-reducible manifolds with semi-C-reducible metrics and prove the Theorem 1.1. For this reason, we first prove the following.

Proof of Theorem 1.1: Let F be a semi-C-reducible metric

$$C_{ijk} = \frac{P}{1+n} \Big\{ h_{ij}I_k + h_{jk}I_i + h_{ki}I_j \Big\} + \frac{Q}{||\mathbf{I}||^2} I_i I_j I_k.$$
(3.1)

where P = P(x, y) and Q = Q(x, y) are scalar function on tangent bundle TMand $||\mathbf{I}||^2 := g^{ij} I_i I_j$. Taking the horizontal covariant derivation of (3.1) yields

$$C_{ijk|s} = \frac{P_{|s|}}{n+1} \Big\{ h_{ij}I_k + h_{jk}I_i + h_{ki}I_j \Big\} + \frac{P}{n+1} \Big\{ h_{ij}I_{k|s} + h_{jk}I_{i|s} + h_{ki}I_{j|s} \Big\} \\ + \frac{Q_{|s|}}{||\mathbf{I}||^2} I_i I_j I_k + \frac{Q}{||\mathbf{I}||^2} \Big\{ I_{i|s}I_j I_k + I_i I_{j|s}I_k + I_i I_j I_{k|s} \Big\} \\ - \frac{Q}{||\mathbf{I}||^4} \Big(I_{m|s}I^m + I^m_{|s}I_m \Big) I_i I_j I_k.$$
(3.2)

Contracting (3.2) with y^s implies that

$$L_{ijk} = \frac{P'}{n+1} \Big\{ h_{ij}I_k + h_{jk}I_i + h_{ki}I_j \Big\} + \frac{P}{n+1} \Big\{ h_{ij}J_k + h_{jk}J_i + h_{ki}J_j \Big\} \\ + \frac{Q'}{||\mathbf{I}||^2} I_i I_j I_k - \frac{Q}{C^4} \Big(J_m I^m + J^m I_m \Big) I_i I_j I_k \\ + \frac{Q}{||\mathbf{I}||^2} \Big\{ J_i I_j I_k + I_i J_j I_k + I_i I_j J_k \Big\}.$$
(3.3)

where

 $P' := P_{|s}y^s, \quad Q' := Q_{|s}y^s.$

On the other hand, ${\cal F}$ is semi-P-reducible

$$L_{ijk} = \lambda \left\{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \right\} + 3\mu J_i J_j J_k, \qquad (3.4)$$

where $\lambda = \lambda(x, y)$ and $\mu = \mu(x, y)$ are scalar functions on TM. Putting (3.4) in (3.3) yields

$$\left(\lambda - \frac{P}{n+1}\right) \left\{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \right\} = \frac{Q}{||\mathbf{I}||^2} \left\{ J_i I_j I_k + I_i J_j I_k + I_i I_j J_k \right\} - 3\mu J_i J_j J_k + \frac{Q'}{||\mathbf{I}||^2} I_i I_j I_k - \frac{Q}{||\mathbf{I}||^4} \left(J_m I^m + J^m I_m \right) I_i I_j I_k + \frac{P'}{n+1} \left\{ h_{ij} I_k + h_{jk} I_i + h_{ki} I_j \right\}. (3.5)$$

By definition of characterize scalar, we have

$$P + Q = 1. \tag{3.6}$$

Taking a horizontal derivation of (3.6) yields

$$P' + Q' = 0. (3.7)$$

Contracting (3.5) with g^{ij} and considering (3.7) implies that

$$\left\{ (n+1)\lambda + 3\mu ||\mathbf{J}||^2 - 1 \right\} J_k = 0, \tag{3.8}$$

where

$$||\mathbf{J}||^2 := g^{ij} J_i J_j.$$

Since $(n+1)\lambda + 3\mu ||\mathbf{J}||^2 \neq 1$ then (3.8) implies that

$$J_k = 0.$$

By (3.4), we conclude that F is a Landsberg metric. By considering

$$P' = -Q'$$

(3.5) reduces to following

$$p'\left\{\frac{1}{n+1}\left\{h_{ij}I_k + h_{jk}I_i + h_{ki}I_j\right\} - \frac{1}{||\mathbf{I}||^2}I_iI_jI_k\right\} = 0.$$
 (3.9)

Therefore by (3.9), it results that p is constant along geodesics or the following is holds

$$\frac{1}{n+1} \Big\{ h_{ij}I_k + h_{jk}I_i + h_{ki}I_j \Big\} = \frac{1}{||\mathbf{I}||^2} I_i I_j I_k.$$
(3.10)

Contracting (3.10) with I^i and using the relation

$$h_{ij}I^i = I_j$$

yield

$$\frac{1}{n+1} \Big\{ h_{jk} ||\mathbf{I}||^2 + 2I_j I_k \Big\} = I_j I_k, \tag{3.11}$$

or equivalently

$$h_{jk}||\mathbf{I}||^2 = (n-1)I_jI_k.$$
 (3.12)

Since ${\cal F}$ is a positive-definite metric, we have

$$Rank(h_{jk}||\mathbf{I}||^2) = n - 1, \qquad Rank(I_j I_k) = 1,$$
 (3.13)

which implies that n = 2. This contradicts the assumption $n \ge 3$. Thus $I_k = 0$, which is impossible. It follows that the characteristic scalar P = P(x, y) is constant along Finslerian geodesics.

Proposition 3.1. Let (M, F) be a semi-P-reducible Finsler metric such that $3\mu ||\mathbf{J}||^2 + (n+1)\lambda = 1.$ (3.14)

Then F is L-reducible if and only if $\mu = 0$.

Proof. Let

$$3\mu ||\mathbf{J}||^2 + (n+1)\lambda = 1$$

Then

$$\lambda = \frac{1}{n+1} \Big\{ 1 - 3\mu ||\mathbf{J}||^2 \Big\}.$$
 (3.15)

Putting (3.15) in following

$$L_{ijk} = \lambda \left\{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \right\} + 3\mu J_i J_j J_k, \qquad (3.16)$$

yields

$$L_{ijk} = \frac{1}{n+1} \Big\{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \Big\} \\ -3\mu \Big\{ \frac{||\mathbf{J}||^2}{n+1} \Big\{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \Big\} - J_i J_j J_k \Big\}.$$
(3.17)

Thus F is L-reducible if and only if $\mu = 0$ or the following holds

$$\frac{1}{n+1} \Big\{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \Big\} = \frac{1}{||\mathbf{J}||^2} J_i J_j J_k.$$
(3.18)

Contracting (3.18) with J^i and using the relation

$$h_{ij}J^i = J_j$$

yield

$$\frac{1}{n+1} \Big\{ h_{jk} ||\mathbf{J}||^2 + 2J_j J_k \Big\} = J_j J_k, \tag{3.19}$$

or equivalently

$$h_{jk}||\mathbf{J}||^2 = (n-1)J_j J_k.$$
(3.20)

Since F is a positive-definite metric, we have

$$Rank(h_{jk}||\mathbf{J}||^2) = n - 1, \qquad Rank(J_j J_k) = 1,$$
 (3.21)

which implies that n = 2. This contradicts the assumption $n \ge 3$. Thus $J_k = 0$, which is impossible. Thus $\mu = 0$.

4. Proof of Theorem 1.2

An (α, β) -metric is a scalar function on TM defined by $F := \alpha \phi(s), s = \beta/\alpha$, in which $\phi = \phi(s)$ is a C^{∞} on $(-b_0, b_0)$ with certain regularity, $\alpha = \sqrt{a_{ij}y^iy^j}$ is a Riemannian metric, $\beta = b_i(x)y^i$ is a 1-form on M and $b := \|\beta_x\|_{\alpha}$. For an (α, β) -metric $F := \alpha \phi(s)$, define $b_{i|j}\theta^j := db_i - b_j\theta_i^j$, where $\theta^i := dx^i$ and $\theta_i^j := \Gamma_{ik}^j dx^k$ denote the Levi-Civita connection form of α . Put

$$r_{ij} := \frac{1}{2} (b_{i|j} + b_{j|i}), \quad s_{ij} := \frac{1}{2} (b_{i|j} - b_{j|i}),$$

$$r_{00} := r_{ij} y^{i} y^{j}, \quad s_{j} := b^{i} s_{ij}, \quad s_{0} := s_{j} y^{j},$$

$$\mathbf{a} := \phi (\phi - s\phi'), \qquad (4.1)$$

$$\mathcal{A} := \frac{3s\phi'' - (b^{2} - s^{2})\phi'''}{\phi - s\phi' + (b^{2} - s^{2})\phi''} + (n - 2)\frac{s\phi''}{\phi - s\phi'} - (n + 1)\frac{\phi'}{\phi}. \quad (4.2)$$

In [6], Najafi-Tayebi studied the semi-C-reducibility of a non-Riemannian (α, β) metric $F = \alpha \phi(s)$, $s = \beta/\alpha$, and showed the characteristic scalar of F is given by following

$$P := \frac{n+1}{\mathbf{a}\mathcal{A}} \Big[s\phi\phi'' - \phi'(\phi - s\phi') \Big], \tag{4.3}$$

where $\mathbf{a} = \mathbf{a}(s)$ and $\mathcal{A} = \mathcal{A}(s)$ are given by (4.1) and (4.2), respectively. In the class of (α, β) -metrics, the quantity P = P(s), $s = \beta/\alpha$, characterize Randers metrics. More precisely, we have the following.

Theorem B. Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be a non-Riemannian (α, β) -metric on a manifold M of dimension $n \ge 3$. Then $\mathbf{M} = 0$ if and only if P = 1. Then F is a Randers metric if and only if P = 1.

Then, they proved the following.

Theorem C. Let $F := \alpha \phi(s)$, $s = \beta/\alpha$, be a non-Riemannian regular (α, β) metric on a manifold M of dimension $n \ge 3$. Then P = P(s) is constant along any Finslerian geodesic if and only if one of the following holds (i) β satisfies

$$r_{ij} = 0, \qquad s_i = 0.$$
 (4.4)

(ii) $\phi = \phi(s)$ satisfies

$$(n+1)\left[s(\phi\phi''+\phi'\phi')-\phi\phi'\right] = d\mathbf{a}\mathcal{A},\tag{4.5}$$

where $d \in \mathbb{R}$ is a real constant.

Then, we conclude the following.

Lemma 4.1. Let (M, F) be semi-P-reducible manifold of dimension $n \geq 3$ equipped with an (α, β) -metric $F = \alpha \phi(s)$, $s = \beta/\alpha$, such that

$$3\mu ||\mathbf{J}||^2 + (n+1)\lambda \neq 1.$$
(4.6)

Then one of the following holds:
(i) F is a Berwald metric;
(ii) S = 0;

(iii) $\phi = \phi(s)$ satisfies

$$(n+1)\left[s(\phi\phi''+\phi'\phi')-\phi\phi'\right]=c \ \mathfrak{a}\mathcal{A},\tag{4.7}$$

where $c \in \mathbb{R}$ is a real constant.

Proof. By Theorem 1.1, F is a Landsberg metric or the characteristic scalar of F is a constant along any Finslerian geodesics. In the first case, F reduces to a Berwald metric. In the second case, by Theorem C we get two subcases: (i) $r_{ij} = 0$ and $s_i = 0$ which by Theorem A we have $\mathbf{S} = 0$; (ii) $\phi = \phi(s)$ satisfies the ODE (4.7).

Proof of Theorem 1.2: In [12], Tayebi-Najafi studied and classified the class of 3-dimensional (α, β) -metrics with vanishing Landsberg curvature. They proved that every 3-dimensional non-Riemannian almost regular Landsberg (α, β) -metric $F = \alpha \phi(s)$, $s = \beta/\alpha$, belongs to the one of the following three classes of Finsler metrics:

(1) F is a Berwald metric. In this case, F is a Randers metric or a Kropina metric;

(2) ϕ is given by the ODE

$$\phi^{4-4c}(\phi - s\phi')^{4-c} \left[\phi - s\phi' + (b^2 - s^2)\phi''\right]^{-c} = e^{k_0}, \tag{4.8}$$

where c is a nonzero real constant, k_0 is a real number and $b := ||\beta||_{\alpha}$. In this case, F is a Berwald metric (regular case) or an almost regular unicorn.

However the ODE (4.7) has the solution (4.8). Thus by Lemma 4.1 and the mentioned Theorem, we get the proof. \Box

It is a long-existing open problem in Finsler geometry to find Landsberg metrics which are not Berwaldian. Bao called such metrics unicorns in Finsler geometry. For more recently progress, see [13] and [14].

References

- X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169(2009), 317-340.
- Y. Ichijyō, Finsler spaces modeled on a Minkowski space, J. Math. Kyoto. Univ. 16(1976), 639-652.
- M. Matsumoto and S. Hōjō, A conclusive theorem for C-reducible Finsler spaces, Tensor. N. S. 32(1978), 225-230.
- M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
- 5. M. Matsumoto, Theory of Finsler spaces with (α, β) -metric, Rep. Math. Phys. **31**(1992), 43-84.
- B. Najafi and A. Tayebi, Some curvature properties of (α, β)-metrics, Bull. Math. Soc. Sci. Math. Roumanie, Tome 60 (108) No. 3, (2017), 277-291.
- 7. T. Rajabi, On the norm of Cartan torsion of two classes of (α, β) -metrics, Journal of Finsler Geometry and its Applications, 1(2020), 66-72.
- 8. S. C. Rastogi, On certain P-reducible Finsler spaces, Ganita. 56(2005), 55-64.
- 9. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
- A. Tayebi, On the class of generalized Landsbeg manifolds, Periodica. Math. Hungarica. 72(2016), 29-36.
- A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α, β)-metrics, Indagationes Mathematicae, 27(2016), 670-683.
- A. Tayebi and B. Najafi, Classification of 3-dimensional Landsbergian (α, β)-mertrics, Publ. Math. Debrecen, 96(2020), 45-62.
- A. Tayebi and B. Najafi, The weakly generalized unicorns in Finsler geometry. Sci. China Math. (2021). https://doi.org/10.1007/s11425-020-1853-5.
- A. Tayebi and B. Najafi, On homogeneous Landsberg surfaces, J. Geom. Phys. 168 (2021), 104314.
- A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ. Geom. Appl. 62(2019), 253-266.
- 16. A. Tayebi and M. Razgordani, Four families of projectively flat Finsler metrics with K = 1 and their non-Riemannian curvature properties, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 112(2018), 1463-1485.

- 17. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β) -metrics with vanishing Scurvature, Ann. Polon. Math. **114**(1) (2015), 67-79.
- 18. A. Tayebi and H. Sadeghi, On generalized Douglas-Weyl (α, β) -metrics, Acta. Math. Sinica. English. Series. **31**(2015), 1611-1620.
- A. Tayebi and H. Sadeghi, On Cartan torsion of Finsler metrics, Publ. Math. Debrecen. 82(2) (2013), 461-471.

Received: 14.08.2020 Accepted: 26.12.2020