On the locally flat Finsler manifolds

Document Type : Original Article

Author

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran. Email: sedighehalavi54@gmail.com

Abstract

It is proved that every locally flat Finsler manifold is a locally flat Riemannian manifold. Some low dimensional locally Finsler manifolds are classified. It is also proved that in a categorical sense, there is a correspondence between locally flat Finsler manifolds and locally hessian Riemannian manifolds

Keywords


  • 1. L. Bieberbach, Uber die Bewegungsgruppen der Euklidischen R¨aume I ¨ , Math. Annalen,
    70(3) (1911), 297-336.
  • 2. L. Bieberbach, Uber die Bewegungsgruppen der Euklidischen R¨aume II: Die Gruppen ¨
    mit einem endlichen Fundamentalbereich, Math. Annalen, 72 (3) (1912), 400-412.
  • 3. X. Chen, X. Mo and Z. Shen, On the flag curvature of Finsler metrics of scalar curvature,
    J. London Math. Soc., 68(2003), 762-780.
  • 4. A. Deicke, Uber die Finsler-R¨aume mit ¨ Ai = 0, Arch. Math. 4 (1953), 45-51.
  • 5. S. Deng and Z. Hou, The Group of Isometries of a Finsler space, Pacific J. Math, 207(1),
    2002.
  • 6. N. Bogdan, The Mazur-Ulam theorem, arXiv: 1306.2380v1, (2013).
  • 7. A. Schoenflies, Kristallsysteme und Kristallstruktur, Teubner (1891).
  • 8. L. Charlap, Bieberbach Groups and Flat Manifolds, Springer, (1986).
  • 9. S. B. Myers and N. E. Steenrod, The Group of Isometries of a Riemannian Manifold,
    Annals of Math. Second Series, 40 (2) (1939), 400-416.
  • 10. Li. Chi-Kwong Norms, Isometries, and Isometry Groups, J. Amer. Math. Monthly.,
    107(4) (2000), 334-340.
  • 11. J. Fennel, Isometries between finite-dimensional normed vector spaces, Preprint, (2016).
  • 12. H. Shima, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka
    J. Math. 13 (1976), 213-229.
  • 13. H. Shima, Compact locally hessian manifolds, Osaka J. Math. 15 (1978), 509-513.
  • 14. A. Szczepa´nski, Geometry of crystallographic groups, Singapore, Singapor, World Scientific Publshing, (2012).
  • 15. Z, Shen, Differential Geometry of Spray and Finsler spaces, Kluwer Academic Publishers,
    2001.
  • 16. J. Wolf, Spaces of constant curvature, New York, MacGrow Hill, (1967).
  • 17. R.G. Torrom´e, Averaged structures associated to a Finsler structure,
    arXiv:math/0501058v9.
  • 18. H.C. Wang, On Finsler spaces with completly integrable equations of Killing, J. Lond.
    Math. Soc. 22 (1947), 5-9.