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Abstract. It is proved that every locally flat Finsler manifold is a locally flat

Riemannian manifold. Some low dimensional locally flat Finsler manifolds are

classified. It is also proved that in a categorical sense, there is a correspon-

dence between locally flat Finsler manifolds and locally hessian Riemannian

manifolds.
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1. Introduction

An n-dimensional Riemannian manifold (M,α =
√
aij(x)yiyj) is said to

be locally flat (or locally Euclidean) if (M,α) locally isometric with Euclidean

space, that is , M admits a covering of coordinates neighborhoods each of

which isometric with a Euclidean domain. A Riemannian manifold (M,α) is

locally flat if and only if M admits a covering of coordinates neighborhoods

on each of, the function α(x, y) is independent of x. A classical result affirms

that a Riemannian manifold is locally flat if and only if its Riemann curvature

vanishes (equivalently, the sectional curvature Kα vanishes); This is usually

taken as the definition of a locally flat Riemannian manifold in the contexts.

The universal Riemannian covering space of a complete locally flat Riemann-

ian manifold is the Euclidean space En = (Rn, α0 =
√
δijyiyj). Up to local

isometry, Bieberbach proved that a compact locally flat Riemannian manifold,

is realized as a quotient space Rn/Γ, where Γ is a discrete, co-compact and
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torsion free subgroup of the Euclidean group Isom(En) = E(n) = O(n) ⋉ Rn

group, see [1, 1]; Three dimensional cases was proved by Schoenflies in [7] ear-

lier. 1 dimensional the only complete, locally flat and connected manifolds

are R and S1. In 2 dimensions, the only complete, locally flat and connected

manifolds are cylinder, Möbius strip, Torus and Klein bottle. In 3 dimensions,

there are only 10 complete, locally flat and connected manifolds including 6

oriented manifolds and the remainder are non-oriented, cf. [14].

It is remarkable that likewise the Riemannian case, a Finslerian manifold

(M,F =
√
gij(x, y)yiyj) is said to be locally flat (or locally Minkowskian) if,

M admits a covering of coordinates neighborhoods each of which isometric with

a single Minkowski normed domain. A Finslerian manifold (M,F ) is locally

flat if and only if M admits a covering of coordinates neighborhoods on each

of, the function F (x, y) is independent of x. The flag curvature K of any lo-

cally flat Finsler manifold vanishes identically; while the converse may not be

true generally. It seems that the locally flat Finsler manifolds are multifarious

however, we prove the following theorem.

Theorem 1.1. Every locally flat Finsler manifold is a locally flat Riemannian

manifold.

Therefore, we proved the following result:

Theorem 1.2. There are only two non-isomorphic Bieberbach groups in 2

dimensions with respect to the fourth root metric.

We use the natural representation of E(n) = Isom(Rn, d) in Gl(n + 1R)
given by

T (x) = Ax+ b ∈ E(n) 7→
[

A b

0 1

]

Acknowledgment: The authors are grateful for Professor Mehdi Rafie Rad

for his continuous help and encouragement.

2. Riemann-Finsler manifolds

Let M be a n-dimensional smooth connected manifold. The tangent space

of M at x ∈ M is denoted by TxM and the tangent manifold of M is the

disjoint union of tangent spaces TM :=
∪

x∈M TxM . Every element of TM is

a pair (x, y) where x ∈ M and y ∈ TxM . Denote the slit tangent manifold by

TM0 = TM \ {0}. The natural projection π : TM → M given by π(x, y) := x

makes TM a vector bundle of rank n over M and TM0 a fiber bundle over M

with fiber type Rn \ {0}.
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A Finsler metric on M is a function F : TM → [0,∞) satisfying following

conditions: (i) F is C∞ on TM0, (ii) F (x, y) is positively 1-homogeneous y and

(iii) the Hessian matrix of F 2 with entries

gij(x, y) :=
1

2
[F 2(x, y)]yiyj

is positively defined on TM0.

Given any Finsler metric F on M , the pair (M,F ) is called a Finsler space.

Traditionally, we denote a Riemannian metric by α =
√
aij(x)yiyj . The Cartan

and mean Cartan tensors are defined as follows:

C = Cijkdx
i ⊗ dxj ⊗ dxk, Cijk =

1

4
F 2
yiyjyk , (Cartan tensor),

I = Ikdx
i, Ik = gijCijk (mean Cartan tensor).

By Deicke’s theorem, a Finsler metric F = F (x, y) is Riemannian if and only

if I = 0 (see [4]).

The geodesic spray G is naturally induced by F on TM0 given in any stan-

dard coordinate (xi, yi) for TM0 by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi(x, y) are local functions on TM0 given by

Gi :=
1

4
gih

{
ykF 2

xkyh − F 2
xh

}
.

Assume the following conventions:

Gi
j =

∂Gi

∂yi
, Gi

jk =
∂Gi

j

∂yk
, Gi

jkl =
∂Gi

jk

∂yl
.

The local functions Gi
j are coefficients of a Connection in the pullback bundle

π∗TM −→ M which is called the Berwald connection denoted by D. By |i we

mean the i-th horizontal derivation with respect to D.

The Busemann-Hausdorff volume form dVF = σF (x)dx
1 · · · dxn on any

Finsler space (M,F ) is defined by

σF (x) :=
Vol(Bn(1))

Vol
{
(yi) ∈ Rn | F (yi ∂

∂xi |x) < 1
} .

Assume that

g = det(gij(x, y))

and define

τ(x, y) := ln

√
g

σF (x)
.
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Then, τ = τ(x, y) is a scalar function on TM0, which is called the distortion

[15]. For a vector y ∈ TxM , let c(t),−ϵ < t < ϵ, denote the geodesic with

c(0) = x and ċ(0) = y. The function

S(y) :=
d

dt

[
τ(ċ(t))

]
|t=0

is called the S-curvature with respect to the Busemann-Hausdorff volume form.

A Finsler space is said to be of isotropic S-curvature if there is a function

c = c(x) defined on M such that

S = (n+ 1)c(x)F.

It is called a Finsler space of constant S-curvature once c is a constant. Every

Berwald space is of vanishing S-curvature [15]. Notice that, S-curvature are

in fact non-Riemannian quantities, namely, they vanish for the Riemannian

metrics.

Let (M,α) be a Riemannian space and β = bi(x)y
i be a 1-form defined on

M such that ∥β∥x := supy∈TxM β(y)/α(y) < 1. The Finsler metric F = α+ β

is called a Randers metric on a manifold M . It is know that a Randers metric

F = α+ β is a solution of the following Zermelo navigation problem:

h
(
x,

y

F
− Vx

)
= 1,

where h =
√
hij(x)yiyj is a Riemannian metric and V = V i(x) ∂

∂xi is a vector

field with

h(x,−Vx) =
√

hij(x)V i(x)V j(x) < 1.

In fact, α and β are given by

α =

√
λh2 + V0

λ
, and β = −V0

λ
,

respectively where

λ = 1− h(x,−Vx), and V0 = V iyjhij .

It is proved that for every Randers metric F = α+β on n-dimensional manifold

M expressed in terms of a Riemannian metric h and a vector field V , F has

isotropic S-curvature S = (n + 1)c(x)F (x, y) if and only if V is a conformal

vector field,

LV h = −4c(x)h.

A locally flat manifold is an n-dimensional manifold M admitting a locally

flat liner connection. A Riemannian manifold (M,α) is said to be a Riemannian

locally flat manifold if the sectional curvature of α vanishes identically. We may

observe immediately that the following conditions are equivalent:

(1) (M,α) is a locally flat Riemannian manifold,

(2) The Cristoffel symbols of α are locally vanishing,
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(3) The Riemann curvature tensor vanishes,

(4) M can be covered by an atlas whose coordinate neighborhoods are

isometric with an open set of Rn equipped withe Euclidean metric,

(5) M can be covered by an atlas so that α(x, y) does note depend to x on

any coordinates neighbor hood.

Notice that, the conditions (2)-(5) above are not equivalent for Finsler man-

ifolds. However, we prefer to define the locally flat Finsler manifolds in the

simplest way as follows: A Finsler manifold (M,F ) is said to be locally flat

if M can be covered by an atlas so that F (x, y) does not depend to x on any

coordinates neighborhood.

2.1. Proof of Theorem 1.1. Let us suppose that (M,F ) be a Finsler space.

Given any point x ∈ M , the tangent space TxM can be equipped with the

Riemannian metric gx = gij(x, v)dv
i ⊗ dvj and the canonical volume form

Ωx =
√
det(gij(x, v))dv

1 ∧ dv2 ∧ ... ∧ dvn.

The volume form Ωx can be pulled back by its the natural embedding Sx0 ↪→
TxM to a volume form ωx0 on the indicatrix Sx. Without loss of generality,

we may further assume the

Vol(Sx) =

∫
Sx

ωx = 1.

One may consider several geometric objects on the manifold M using integra-

tion on each indicatrix Sx. The averaged Riemannian metric of F is denoted

by α =
√

aij(x)vjvj and is defined by

α2(x, v) = aij(x)v
ivj :=

∫
Sx

vivjgij(x, v)ωx. (2.1)

One may also refer [17] to be informed about other potential averaged struc-

tures on Finsler spaces. Now, suppose that the Finsler space (M,F ) is locally

flat. It follows that M can be covered by an atlas so that F (x, y) does not

depend to x on any coordinates neighborhood. It results immediately that the

average Riemannian metric α(x, y) given by (2.1) does not depend to x either.

Therefore, α is a locally flat Riemannian metric on M and M is a locally flat

Riemannian space. □

3. Bieberbach Theorems

Three Bieberbach theorems suggest a good recognition of algebraic structure

of crystallographic groups.

1. First theorem asserts that Γ subgroup of all translations in the Euclidean
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space En is a normal subgroup of Isom(En) which is of finite index. This sub-

group is inclusive n translation which are linear independent, with their help

we have a short exact sequence

1 → Zn → Γ → G → 1.

Above Zn is identical with subgroup of all translation in Γ and G corresponds

with Γ/Zn is finite. By this short exact sequence we can make a homomorphism

hΓ : G −→ GL (n,Z) .

hΓ was named Holonomy description. If a crystallographic group is torsion

free, then it calls Bieberbach group.

2. These groups have important properties, because their quotient spaces,

which represented Mn = Rn/Γ are manifolds with fundamental groups Γ. This

sentence means as Γ acts on Rn by isometries contemporary Mn manifold en-

joys Riemannian structure by Euclidean space. this means Mn is a locally flat

manifold. On the other words two crystallographic groups are equivalent if and

only if these are isomorphic in algebra.

3. Since in third Bieberbach Theorem said that, in any finite dimension there

are only finite number of crystallographic group (with isomorphism), can clas-

sification these groups.

4. Bieberbach Groups and Fourth Root Metric

First, we remark that every discrete and compact subgroup of E(n) =

O(n)⋉Rn = Isom(Rn, d0) is called a crystallographic group, where d0 denotes

the Euclidean metric, cf. [14]. Three Bieberbach theorems suggest a good

recognition of the algebraic structure of the crystallographic groups. First the-

orem asserts that given any crystallographic group Γ, the set of translations

Γ ∩ ({In} × Rn) is a torsion free and finitely generated Abelian group of rank

n and finite index in E(n). This subgroup contains n translation(s) which are

linearly independent and Γ satisfies the following short exact sequence (cf. [8]):

1 → Zn → Γ → G → 1,

where, G = Γ/Zn is a finite group. This short exact sequence yields a homo-

morphism hΓ : G −→ GL (n,Z). hΓ which is called the Holonomy description.

Every torsion free crystallographic group is called a Bieberbach group. These

groups are interesting since given any Bieberbach group Γ ⊆ Rn, the quotient

space, Rn/Γ is an n-diemnsional manifold with fundamental groups Γ and are

locally isometric with (Rn, d0), in particular, Rn/Γ is a locally flat manifold.

Indeed, the second Bieberbach’s Theorem asserts that, two crystallographic

groups of dimension n are isomorphic if and only if they are conjugate in the

affine group A(n); Moreover, the third Bieberbach’s Theorem asserts that, in
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any finite dimensions there are only finitely many crystallographic groups (up

to isomorphism).

The above procedure can be reconstructed starting any other Minkowski

norm-derived metrics on Rn. An isometry (Rn, d) is a surjective mapping

f : Rn −→ Rn such that we have d(x, y) = d(f(x), f(y)), x, y ∈ Rn. The set of

isometries of Rn, d) forms the isometry group Isom(Rn, d). We would like to

classify the discrete and cocompact subgroups of Rn, d) with respect to other

important metrics; These subgroups are in fact counterparts for the crystallo-

graphic groups. We may go further and distinguish such groups possessing tor-

sion freeness; These groups are also alternatives for the Bieberbach group. Any

discrete and cocompact subgroup of Isom(Rn, d) is called a d-crystallographic

group. The following classical result ensures that any d-crystallographic group

contains only affine transformations in A(n).

Theorem 4.1. ([6]) (Mazur-Ulam 1932) Every bijective isometry between real

normed spaces is affine.

For example, we may endow Rn with the norm-derived metric: the 4th root

metric d4. This metric is given by:{
∥ · ∥4 : Rn −→ R,
∥x∥4 = ∥(x1, x2, . . . , xn)∥ = 4

√
x4
1 + x4

2 + . . .+ x4
n.{

d : Rn × Rn −→ R,
d(x, y) = ∥x− y∥4 = 4

√∑n
i=1(xi − yi)4.

5. Proof of Theorem 1.2

Consider the subgroup of GL(n,R) containing matrices that their entries

belong to {−1, 0, 1} There are 81 different such matrices where n = 2, including

the zero matrix, 8 matrices having 3 zero entries, 16 matrices have a zero column

or a zero row, so their determinant are equal to zero and these matrices are not

in Gl(2,R). 4 matrices have 4 different entries, but two row or two column are

the same, so their determinant are equal to zero and these matrices are not in

Gl(2,R). 52 remaining matrices are nonsingular and the following remaining 8

matrices are ∥.∥4 preserving, i.e ∥Ax∥4 = ∥X∥4, (x ∈ Rn), A is a square matrix

that its order is 2:

A1 =

[
1 0

0 1

]
, A2 =

[
−1 0

0 −1

]
, A3 =

[
1 0

0 −1

]
, A4 =

[
−1 0

0 1

]
,

A5 =

[
0 1

1 0

]
, A6 =

[
0 −1

−1 0

]
, A7 =

[
0 1

−1 0

]
, A8 =

[
0 −1

1 0

]
.

Every isometry is presented by a pair (A, b) of a matrix A ∈ GL(2,R) and

a vector b ∈ R2 4.1. It is well-known that, as a subgroup of Aff(R2), the
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isometry group has a Gl(3,R3)-representation, [8]. The possible Bieberbach

groups are listed by G1, ..., G7 noticing their generators as follows:

G1 =
{
I,Γn|n ∈ Z

}
,

where

Γn :=

1 0 na

0 1 nb

0 0 1

 ,

where a, b ∈ R. Thus Γ1 is torsion free group.

G2 =
{
I, J,Γ2, I3

}
, (a, b ∈ R),

where

J :=

[
−1 0

0 −1

]
, Γ2 :=

−1 0 a

0 −1 b

0 0 1


So Γ2, is a torsion group. It is meaning that Γ2 can’t be Bieberbach group.

G3 =
{
I,

[
1 0

0 −1

]}
,

Γ3 =

{1 0 na

0 −1 b

0 0 1

n is odd,

1 0 na

0 1 0

0 0 1

n is even|n ∈ Z

}
, (a, b ∈ R).

So Γ3, is a torsion free group.

G4 =

{
I,

[
−1 0

0 1

]}
Γ4 is isomorphic with Γ3, so Γ4 is a torsion free group.

G5 =

{
I,

[
0 1

1 0

]}

Γ5 =

{
An if n is odd, and Bn if n is even

∣∣∣ n ∈ Z, (a, b ∈ R)

}
where

An :=


0 1

n+ 1

2
a+

n− 1

2
b

1 0
n+ 1

2
b+

n− 1

2
a

0 0 1


and

Bn :=


1 0

n

2
a+

n

2
b

0 1
n

2
a+

n

2
b

0 0 1

 .
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Γ5 is a torsion free group and Γ5 is isomorphic with Γ3.

G6 =

{
I,

[
0 −1

−1 0

]}

Γ6 =
{
Cn n is odd, and Dn n is even| n ∈ Z

}
, (a, b ∈ R),

where

Cn :=


0 −1

n+ 1

2
a− n− 1

2
b

−1 0
n+ 1

2
b− n− 1

2
a

0 0 1


and

Dn :=


1 0

n

2
a− n

2
b

0 1
n

2
b− n

2
a

0 0 1


Γ6, is a torsion free group too, and Γ6 is isomorphic with Γ3.

G7 =

{
I,

[
0 1

−1 0

]
,

[
0 −1

1 0

]
,

[
−1 0

0 −1

]}

Γ7 =

{ 0 1 a

−1 0 b

0 0 1

 ,

−1 0 a+ b

0 −1 b− a

0 0 1

 ,

0 −1 b

1 0 −a

0 0 1

 , (a, b ∈ R)

}
Γ7, is a torsion group, so Γ7 isn’t a Bieberbach group.

A subgroup of E(n) is cocompact if the quotient space E(n)/Γ is com-

pact. Now, we may study the structure of quotient spaces E(2)/Γi, where,

i = 1, · · · , 7. we notice that some of arising quotient spaces are isomorphic.

Corollary 5.1. Every discrete and cocompact subgroup of Isom(Rn, d4) is a

crystallographic group.

In first position:

E(2)
Γ1

=
O(2)⋉R2

Γ2

∼=
GP(2)⋉R2

R2
∼= GP(2)

1- Subgroup Γ1 is cocompact, because GP(2)(the group of generalized permu-

tation matrices) is compact (see[14] and [11]). Also GP(2) (is discrete, with

induced topology that is consequence of homeomorphisem betweenM(2,R) and
R4. Consequently Γ1 is crystallographic group. Hence Γ1 is Bieberbach group,

because Γ1 is torsion free too. Torus is result of quotient space of Γ1.

2- Subgroups Γ2 and Γ7 aren’t Bieberbach group, since these are torsion group.
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3- Subgroups Γ3, Γ4, Γ5 and Γ6 are isomorphic, so their Bieberbach groups

are equal. This means their quotient spaces are homeomorphic to the Klein

bottle. □

Now, we discuss the case in 3 dimensions. Consider the subgroup of Gl(3,R)
containing the matrices whose entries belong to {−1, 0, 1}. So if n = 3, for isom-

etry condition, we have for A matrix [14]:

1) G1 = {I} and its Isometry group is

Γ1 =
{
En| n ∈ Z

}
,

where

En :=


1 0 0 na

0 1 0 nb

0 0 1 nc

0 0 0 1


that is torsion free and Bieberbach group of isometries. So quotient space is a

torus.

2) Let

G2 =
{
I(3), Fn

}
,

where

Fn :=

1 0 0

0 0 1

0 1 0


and its Isometry group is

Γ2 =
{
an, bn| n ∈ Z

}
,

where

an :=


1 0 0

2n− 1

2
0 0 1 n

0 1 0 n− 1

0 0 0 1


and

bn :=


1 0 0 n

0 1 0 n

0 0 1 n

0 0 0 1

 .
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One can see that Γ2 is torsion free.

3) Let

G3 =
{
I(3), dn

}
,

where

dn :=

1 0 0

0 1 0

0 0 −1

 .

Then for Isometry group, we have

Γ3 =
{
en, fn|n ∈ Z

}
,

where

en :=


1 0 0

2n− 1

2
0 1 0 2n− 1

0 0 −1 1

0 0 0 1

 , fn :=


1 0 0 n

0 1 0 2n

0 0 1 0

0 0 0 1


4) Let

G4 =
{
I(3), w

}
,

where

w :=

1 0 0

0 −1 0

0 0 −1

 .

Then, the isometry group is

Γ4 =
{
hn, kn| n ∈ Z

}
,

where

hn :=


1 0 0

2n− 1

2
0 −1 0 1

0 0 −1 1

0 0 0 1

 and kn :=


1 0 0 n

0 1 0 0

0 0 1 0

0 0 0 1


This group is torsion free.

5) Now, let

G5 =
{
I(3), b1, A1 = b2, A2 = b3

}
,

where

b1 :=

1 0 0

0 −1 0

0 0 −1

 , b2 :=

1 0 0

0 1 0

0 0 −1

 , b3 :=

1 0 0

0 −1 0

0 0 1

 .
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Then Γ5 is a generated group, i.e.,

Γ5 = ⟨w1, w2⟩,

where

w1 :=


1 0 0

1

2
0 1 0 1

0 0 −1 0

0 0 0 1

 , w2 :=


1 0 0 0

0 −1 0 1

0 0 1
1

2
0 0 0 1


and a ∈ R. Γ5 is torsion free.

6) Let

G6 =
{
I(3), A1 = s1, A2 = s2

}
,

where

s1 :=

1 0 0

0 0 −1

0 1 −1

 , s2 :=

1 0 0

0 −1 1

0 −1 0


and

Γ6 =
{
t1n, t2n, t3n

∣∣ n ∈ Z
}
,

where

t1n :=


1 0 0

3n− 1

3
0 0 −1 1

0 1 −1 0

0 0 0 1

 , t2n :=


1 0 0

3n− 2

3
0 −1 1 1

0 −1 0 1

0 0 0 1



t3n :=


1 0 0 n

0 1 0 0

0 0 1 0

0 0 0 1


One can see that Γ6 is torsion free.

7) Let

G7 =
{
I(3), A1, A2, A3

}
,

where

A1 :=

1 0 0

0 0 1

0 −1 0

 , A2 :=

1 0 0

0 0 −1

0 1 0

 , A3 :=

1 0 0

0 −1 0

0 0 −1


and

Γ7 =
{
r1n, r2n, r3n, r4n

∣∣ n ∈ Z
}
,
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where

r1n :=


1 0 0

4n− 3

4
0 0 1 1

0 −1 0 1

0 0 0 1

 , r2n :=


1 0 0

4n− 1

4
0 0 −1 1

0 1 0 −1

0 0 0 1

 ,

r3n :=


1 0 0

4n− 2

4
0 −1 0 2

0 0 −1 0

0 0 0 1

 , r4n :=


1 0 0 n

0 1 0 0

0 0 1 0

0 0 0 1

 .

It is easy to see that Γ7 is torsion free.

8) Let

G8 =
{
I(3),m1,m2,m3,m4,m5

}
,

where

m1 :=

1 0 0

0 1 −1

0 1 0

 , m2 :=

1 0 0

0 0 −1

0 1 −1

 , m3 :=

1 0 0

0 −1 0

0 0 −1



m4 :=

1 0 0

0 −1 1

0 −1 0

 , m5 :=

1 0 0

0 0 1

0 −1 1

 .

One can see that

Γ8 =
{
k1, k2, k3, k4, k5, k6| n ∈ Z

}
,

where

k1 :=


1 0 0 n

0 1 0 0

0 0 1 0

0 0 0 1

 , k2 :=


1 0 0

6n− 5

6
0 1 −1 1

0 1 0 1

0 0 0 1

 ,

k3 :=


1 0 0

6n− 4

6
0 0 −1 1

0 1 −1 2

0 0 0 1

 , k4 :=


1 0 0

6n− 3

6
0 −1 0 0

0 0 −1 2

0 0 0 1

 ,

k5 :=


1 0 0

6n− 2

6
0 −1 1 −1

0 −1 0 1

0 0 0 1

 , k6 :=


1 0 0

6n− 1

6
0 0 1 −1

0 −1 1 0

0 0 0 1

 .
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This group is torsion free.

9) Let

G9 =
{
I(3), A1, A2, A3

}
,

where

A1 :=

−1 0 0

0 −1 0

0 0 1

 , A2 :=

−1 0 0

0 1 0

0 0 −1

 , A3 :=

1 0 0

0 −1 0

0 0 −1

 .

Thus Γ9 is a generated group:

Γ9 = ⟨L1, L2⟩.

where

L1 :=


−1 0 0 0

0 1 0
1

2

0 0 −1
1

2
0 0 0 1

 , L2 :=


1 0 0

1

2

0 −1 0
1

2
0 0 −1 0

0 0 0 1

 .

However Γ9 is torsion free.

10) Finally, let

G10 =
{
I(3), A1, A2, A3

}
,

where

A1 :=

1 0 0

0 −1 0

0 0 1

 , A2 :=

1 0 0

0 1 0

0 0 −1

 , A3 :=

1 0 0

0 −1 0

0 0 −1


It is easy to see that Γ10 is a generated group too:

Γ10 = ⟨X1, X2⟩,

where

X1 :=


1 0 0 0

0 −1 0 1

0 0 1
1

2
0 0 0 1

 , X2 :=


1 0 0

1

2

0 1 0
1

2
0 0 −1 0

0 0 0 1


This group is torsion free. so all of these group are torsion free. If E(3)/Γi

that i=1,2, ...,10, become compact for that whose Γi become cocompact. In

addition to, they should be discrete. These properties are needed to their

become Bieberbach groups (see [16]).
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