Projective vector fields on special (α,β)-metrics

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran. E-mail: s.masoumi94@gmail.com

Abstract

In this paper, we study the projective vector fields on two special
(α,β)-metrics, namely Kropina and Matsumoto metrics. First, we consider
the Kropina metrics, and show that if a Kropina metric F = α2/β admits
a projective vector field, then this is a conformal vector field with respect to
Riemannian metric a or F has vanishing S-curvature. Then we study the
Matsumoto metric F = α2/(α−β) and prove that if the Matsumoto metric
F = α2/β admits a projective vector field, then this is a conformal vector field
with respect to Riemannian metric a or F has vanishing S-curvature.

Keywords


  • 1. G.S. Asanov, Finsler Geometry, Relativity and Gauge Theories, D. Reidel Publishing
    Company, Dordrecht, Holland (1985).
  • 2. D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S3,
    J. Lond. Math. Soc., 66 (2002), 453-467.
  • 3. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J.
    Math. 169(2009), 317-340.
  • 4. R.S. Ingarden, Geometry of thermodynamics, Diff. Geom. Methods in Theor. Phys, XV
    Intern. Conf. Clausthal 1986, World Scientific, Singapore (1987).
  • 5. V.K. Kropina, On projective two-dimensional Finsler spaces with a special metric, Trudy
    Sem. Vektor. Tenzor. Anal. 11 (1961), 277-292.
  • 6. M. Matsumoto, A slope of a mountain is a Finsler surface with respect to a time measure,
    J. Math. Kyoto Univ. 29(1) (1989), 17-25.
  • 7. M. Matsumoto, Finsler spaces with (α, β)-metric of Douglas type, Tensor, N.S. 60 (1998),
    123-134.
  • 8. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992),
    43-84.
  • 9. M. Rafie-Rad, Some new characterizations of projective Randers metrics with constant
    S-curvature, J. Geom. Phys. 6(2) (2012), 272-278.
  • 10. M. Rafie-Rad and B. Rezaei, On the projective algebra of Randers metrics of constant
    flag curvature, SIGMA, 085(7), 12 (2011).
  • 11. P. Stavrinos and F. Diakogiannni, Finslerian structure of anisotropic gravitational field,
    Gravit. Cosmol. 10(4) (2004), 1-11.
  • 12. H. Shimada and S. Sabau, Introduction to Matsumoto metric, Nonlinear Anal, Theory
    Methods Appl., Ser. A, Theory Methods. 63 (2005), 165-168.
  • 13. A. Tayebi, T. Tabatabaeifar, and E.Peyghan, On the second approximate Matsumoto
    metric, Bull. Korean Math. Soc. 51(1) (2014), 115-128.
  • 14. K. Yano, The theory of Lie derivative and its applications, North Holland , Amsterdam
    (1957).
  • 15. X. Zhang and Y.B. Shen, On Einstein Kropina metrics, Differ. Geom. Appl. 31(1) (2013),
    80-92.