On weakly Landsberg 3-dimensional Finsler spaces

Document Type : Original Article

Author

Department of Mathematics, Faculty of science, University of Qom. Email: marzeia.amini@gmail.com

Abstract

In this paper, we study the class of 3-dimensional Finsler manifolds. We find the necessary and sufficient condition under which a 3-dimensional weakly Landsberg metric reduces to a Landsberg metric.

Keywords


  • 1. M. Atashafrouz , Characterization of 3-dimensional left-invariant locally projectively flat
    Randers metrics, Journal of Finsler Geometry and its Applications, 1(2020), 96-102.
  • 2. Y. Ichijy¯o, Finsler spaces modeled on a Minkowski space, J. Math. Kyoto. Univ. 16(1976),
    639-652.
  • 3. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces, Tensor.
    N. S. 32(1978), 225-230.
  • 4. M. Matsumoto, Remarks on Berwald and Landsberg spaces, Contemp. Math. 196(1996),
    79-82.
  • 5. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars,
    Demonst. Math, 6(1973), 223-251.
  • 6. M. Matsumoto and C. Shibata, On semi-C-reducibility, T-tensor and S4-1ikeness of
    Finsler spaces, J. Math. Kyoto Univ. 19(1979), 301-314.
  • 7. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important
    tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
  • 8. A. Mo´or, Uber die Torsion-Und Krummungs invarianten der drei reidimensionalen ¨
    Finslerchen R¨aume, Math. Nach, 16(1957), 85-99.
  • 9. T. Rajabi, On the norm of Cartan torsion of two classes of (α, β)-metrics, Journal of
    Finsler Geometry and its Applications, 1(2020), 66-72.
  • 10. A. Tayebi, On the class of generalized Landsbeg manifolds, Periodica. Math. Hungarica.
    72(2016), 29-36.
  • 11. A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α, β)-metrics, Indagationes Mathematicae, 27(2016), 670-683.
  • 12. A. Tayebi and B. Najafi, The weakly generalized unicorns in Finsler geometry, Sci. China
    Math. (2021). https://doi.org/10.1007/s11425-020-1853-5.
  • 13. A. Tayebi and B. Najafi, On homogeneous Landsberg surfaces, J. Geom. Phys. 168(2021),
    104314.
  • 14. A. Tayebi and B. Najafi, Classification of 3-dimensional Landsbergian (α, β)-mertrics,
    Publ. Math. Debrecen, 96(2020), 45-62.
  • 15. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ.
    Geom. Appl. 62(2019), 253-266.
  • 16. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing Scurvature, Ann. Polon. Math. 114(1) (2015), 67-79.
  • 17. A. Tayebi and H. Sadeghi, On generalized Douglas-Weyl (α, β)-metrics, Acta. Math.
    Sinica. English. Series. 31(2015), 1611-1620.
  • 18. A. Tayebi and T. Tabatabaeifar, Unicorn metrics with almost vanishing H- and Ξcurvatures, Turkish. J. Math. 41(2017), 998-1008.