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Abstract. In this paper, we study the class of 3-dimensional Finsler manifolds.

We find the necessary and sufficient condition under which a 3-dimensional

weakly Landsberg metric reduces to a Landsberg metric.
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1. Introduction

Let (M,F ) be a Finsler manifold and c : [a, b] → M be a piecewise C∞ curve

from c(a) = p to c(b) = q. For every u ∈ TpM , let us define Pc : TpM → TqM

by Pc(u) := U(b), where U = U(t) is the parallel vector field along c such

that U(a) = u. Pc is called the parallel translation along c. In [2], Ichijyō

showed that if F is a Berwald metric, then all tangent spaces (TxM,Fx) are

linearly isometric to each other. Let us consider the Riemannian metric ĝx on

TxM0 := TxM − {0} which is defined by

ĝx := gij(x, y)δy
i ⊗ δyj ,

where gij := 1/2[F 2]yiyj is the fundamental tensor of F and {δyi := dyi +

N i
jdx

j} is the natural coframe on TxM associated with the natural basis

{∂/∂xi|x} for TxM . If F is a Landsberg metric, then for any C∞ curve c,

Pc preserves the induced Riemannian metrics on the tangent spaces, i.e.,

Pc : (TpM, ĝp) → (TqM, ĝq)

is an isometry.
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On a Landsberg manifold, the volume function V ol = V ol(x) of the unit

tangent sphere SxM ⊂ (TxM, ĝx) is a constant. The constancy of V ol(x)

is required to establish a Gauss-Bonnet theorem for Finsler manifolds. The

volume function is closely related to a weaker non-Riemannian quantity, mean

Landsberg curvature J = Jkdx
k, where

Jk := gijLijk.

Finsler metrics with J = 0 are called weakly Landsberg metrics. By definition,

every Landsberg metric is a Landsberg metric, but the converse may not hold.

Thus, we get the following

{Landsberg metrics} ⊆ {Weakly Landsberg metrics}.

In dimension two, any weakly Landsberg metric must be a Landsberg metric.

It has been shown that on a weakly Landsberg manifold, the volume function

is a constant. Some rigidity problems also lead to weakly Landsberg manifolds.

For example, for a closed Finsler manifold of non-positive flag curvature, if the

S-curvature is a constant, then it is weakly Landsbergian. Apparently, weakly

Landsberg manifolds deserve further investigation. For the first step, it is an

interesting problem to consider the class of 3-dimensional Finsler manifolds

with vanishing mean Landsberg curvature [1].

In [8], Moór introduced a special orthonormal frame field (ℓi,mi, ni) in the

three dimensional Finsler space. The first vector of the frame is the normalized

supporting element, the second is the normalized mean Cartan torsion vector,

and third is the unit vector orthogonal to them. Let (M,F ) be a 3-dimensional

Finsler manifold. Suppose that ℓi := Fyi is the unit vector along the element of

support, mi is the unit vector along mean Cartan torsion Ii, i.e., mi := Ii/||I||,
where ||I|| :=

√
IiIi and ni is a unit vector orthogonal to the vectors ℓi and

mi. Then the triple (ℓi,mi, ni) is called the Moór frame.

An (α, β)-metric is a Finsler metric on M defined by F := αϕ(s), where

s = β/α, ϕ = ϕ(s) is a C∞ function on the (−b0, b0) with certain regularity,

α =
√

aij(x)yiyj is a positive-definite Riemannian metric and β = bi(x)y
i is

a 1-form on M (for more details, see [11], [15], [16] and [17]). If ϕ = 1 + s,

then we get the Randers metric. In [14], Tayebi-Najafi classified the class of 3-

dimensional (α, β)-metrics with vanishing Landsberg curvature. They showed

that these metrics belong to one of the following main classes: Berwald met-

rics which contain the Randers or Kropina metrics, or satisfy an ODE. More

precisely, they proved the following.

Theorem A. Every 3-dimensional non-Riemannian almost regular Landsberg

(α, β)-metric F = αϕ(β/α) belongs to the one of the following three classes of

Finsler metrics:
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(i) F is a Berwald metric. In this case, F is a Randers metric or a Kropina

metric;

(ii) ϕ(t) is given by the ODE

ϕ(t)4−4c
(
ϕ(t)− tϕ′(t)

)4−c
[
ϕ(t)− tϕ′(t) + (b2 − t2)ϕ′′(t)

]−c

= ek0 , (1.1)

where c is a nonzero real constant, k0 is a real number and b := ||β||α. In this

case, F is a Berwald metric (regular case) or an almost regular unicorn.

It is well known that every Berwald space is a Landsberg space. However,

it has been one of the longest standing problem in Finsler geometry whether

there exists a Landsberg space which is not a Berwald space. In 1996, Mat-

sumoto found a list of rigidity results which almost suggest that such metric

does not exist [4]. In 2003, Matsumoto emphasized this problem again and

looked on it as the most important open problem in Finsler geometry. Re-

cently, Bao called such spaces unicorns in Finsler geometry. For the unicorn

problem, one can see [12], [13] and [18].

Let (M,F ) be a 3-dimensional non-Riemannian Finsler manifold. Let H =

H(x, y), I = I(x, y) and J = J (x, y) are the main scalars of F . It is well-

known that F is semi-C-reducible if and only if J = 0 (see [6]). It is proved

that F is a C-reducible metric if and only if its main scalars satisfy the following

H = 3I, J = 0.

In this case, I = F∥I ∥/4. Also, it is showed that a 3-dimensional Finsler

metric F is a Berwald metric if and only if it has horizontally constant main

scalars with vanishing h-connection vectors. Then it is proved F is a Landsberg

metric if and only if it has constant main scalars along Finslerian geodesics

and h0 = 0, where h0 := hiy
i. Let F = αϕ(s), s = β/α, be a non-Riemannian

(α, β)-metric on a 3-dimensional manifold M . In [14], Tayebi-Najafi proved

that F has bounded Cartan torsion if and only if the following holds

3I2 +H2 < ∞.

For a 3-dimensional non-Riemannian Finsler manifold (M,F ), let us define

the function bi = bi(x, y) as follows

bi :=
F

3(H+ I)2
[
(H− 3I)mi − 4J ni

]
. (1.2)

Theorem 1.1. Let (M,F ) be a non-Riemannian 3-dimensional weakly Lands-

berg manifold. Then F is a Landsberg metric if and only if the quantity

bi = bi(x, y) is horizontally constant along Finsler geodesics.
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2. Preliminaries

Let (M,F ) be an n-dimensional Finsler manifold. The fundamental tensor

gy : TxM × TxM → R of F is defined by following

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,

define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
|t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. By definition, Cy is

a symmetric trilinear form on TxM . It is well known that, C = 0 if and only

if F is Riemannian.

For y ∈ TxM0, define Iy : TxM → R by

Iy(u) =
n∑

i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈ M . The family I := {Iy}y∈TM0 is called

the mean Cartan torsion. By Diecke Theorem, a positive-definite metric F is

Riemannian if and only if Iy = 0.

At any point x ∈ M , the norm of I is defined as follows

||I|| = sup
y,u∈TxM0

F (y)|Iy(u)|
[gy(u, u)]

3
2

= sup
y,u∈IxM

|Iy(u)|
[gy(u, u)]

3
2

, (2.1)

where IxM is the indicatrix of F at point x ∈ M (see [9]).

For a vector y ∈ TxM0, define the Matsumoto torsion My : TxM ⊗ TxM ⊗
TxM → R by

My(u, v, w) := Cy(u, v, w)−
1

n+ 1

{
Iy(u)hy(v, w)+Iy(v)hy(u,w)+Iy(w)hy(u, v)

}
,

where

hy(u, v) := gy(u, v)− F−2(y)gy(y, u)gy(y, v)

is the angular metric [7]. A Finsler metric F is said to be C-reducible ifMy = 0.

In local coordinate, it is written as follows:

Cijk =
1

n+ 1

{
Iihjk + Ijhki + Ikhij

}
.

In [3], Matsumoto-Hōjō proved the following.

Lemma 2.1. ([3]) A Finsler metric F on a manifold of dimension n ≥ 3 is a

Randers metric if and only if My = 0, ∀y ∈ TM0.
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Given a Finsler manifold (M,F ), then a global vector field G is induced by

F on TM0, and in a standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi = Gi(x, y) are scalar functions on TM0 given by

Gi :=
1

4
gij

{
∂2[F 2]

∂xk∂yj
yk − ∂[F 2]

∂xj

}
, y ∈ TxM.

The vector field G is called the spray associated with (M,F ).

The Landsberg curvature of F is defined by following

Ly(u, v, w) :=
d

dt

[
Cσ̇(t)

(
U(t), V (t),W (t)

)]
t=0

,

where y ∈ TxM , σ = σ(t) is the geodesic with σ(0) = x, σ̇(0) = y and

U = U(t), V = V (t) and W = W (t) are linearly parallel vector fields along σ

with U(0) = u, V (0) = v and W (0) = w, respectively. Then the Landsberg

curvature Ly is the rate of change of Cy along geodesics for any y ∈ TxM0. F

is called a Landsberg metric if it satisfies L = 0 (see [10]).

For a non-zero vector y ∈ TxM , define Jy : TxM → R by Jy(u) := Ji(y)u
i,

where

Jy(u) =

n∑
i=1

gij(y)Ly(u, ∂i, ∂j).

J is called the mean Landsberg curvature of F . Then F is called a weakly

Landsberg metric if J = 0. Also, the mean Landsberg curvature of F is defined

by following

Jy(u) :=
d

dt

[
Iσ̇(t)

(
U(t)

)]
t=0

,

where y ∈ TxM , σ = σ(t) is the geodesic with σ(0) = x, σ̇(0) = y and

U(t), V (t),W (t) are linearly parallel vector fields along σ with U(0) = u, V (0) =

v,W (0) = w. Then the mean Landsberg curvature Jy is the rate of change of

Iy along geodesics for any y ∈ TxM0. Mean Landsberg curvature can also be

defined as following

Ji := ym
∂Ii
∂xm

− Im
∂Gm

∂yi
− 2Gm ∂Ii

∂ym
.

3. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. For this aim, we prove

the following.
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Lemma 3.1. Let (M,F ) be a non-Riemannian 3-dimensional weakly Landsberg

manifold. Suppose that the quantity bi = bi(x, y) is horizontally constant along

Finsler geodesics. Then F is a Landsberg metric.

Proof. For 3-dimensional Finsler manifolds, we have

gij = ℓiℓj +mimj + ninj .

Thus

gij = ℓiℓj +mimj + ninj .

Then the angular metric is given by

hij = mimj + ninj . (3.1)

In [5], Matsumoto showed that the Cartan torsion of F is written as follows

FCijk = Hmimjmk − J
{
mimjnk +mjmkni +mkminj − ninjnk

}
+I

{
ninjmk + njnkmi + ninkmj

}
, (3.2)

where H, I and J are called the main scalars of F . Contracting (3.2) with gij

implies that

FIk = (H+ I)mk. (3.3)

Multiplying (3.3) with gmk yields

FIk = (H+ I)mk. (3.4)

By (3.3) and (3.4) we get

H+ I = F ||I||. (3.5)

From (3.3) and (3.5), we have

Ik = ||I||mk. (3.6)

Comparing (3.5) and (3.6) imply that F is a Riemannian if and only if H+I =

0. Throughout this paper, we assume that H+ I ̸= 0.

Now, by considering (3.1) and (3.3), one can rewrite (3.2) as

Cijk =
{
aihjk + ajhki + akhij

}
+
{
biIjIk + bjIiIk + bkIiIj

}
, (3.7)

where

ai :=
1

3F

[
3Imi + J ni

]
, bi :=

F

3(H+ I)2
[
(H− 3I)mi − 4J ni

]
. (3.8)

It is easy to see that aiy
i = 0 and biy

i = 0.
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The horizontal derivation of the members of the Moór frame with respect to

the Berwald connection are given by following

ℓi|j = 0,

mi|j = hjni −mrL
r
ij ,

ni|j = −hjmi − nrL
r
ij .

Multiplying (3.7) with gij implies that

ai =
1

4

{
(1− 2Imbm)Ii − ||I||2bi

}
, (3.9)

where ||I||2 := ImIm. By plugging (3.9) in (3.7), we get

Cijk − 1

4

{
Iihjk + Ijhki + Ikhij

}
= −2bmIm

4

{
Iihjk + Ijhki + Ikhij

}
−||I||2

4

{
bihjk + bjhki + bkhij

}
+

{
biIjIk + IibjIk + IiIjbk

}
, (3.10)

which yields

Mijk =
{
biIjIk + IibjIk + IiIjbk

}
− 2bmIm

4

{
Iihjk + Ijhki + Ikhij

}
− ||I||2

n+ 1

{
bihjk + bjhki + bkhij

}
. (3.11)

Let us put

M ′
ijk := Mijk|sy

s = Lijk − 1

4

{
Jihjk + Jjhki + Jkhij

}
.

By taking a horizontal derivation of (3.11), we have

M ′
ijk =

{
biJjIk + biIjJk + bjJiIk + bjIiJk + bkJiIj + bkIiJj

}
−1

2
(bmJm + b′mIm)

{
Iihjk + Ijhki + Ikhij

}
−bmIm

2

{
Jihjk + Jjhki + Jkhij

}
−1

2
ImJm

{
bihjk + bjhki + bkhij

}
−||I||2

4

{
b′ihjk + b′jhki + b′khij

}
+
{
b′iIjIk + b′jIiIk + b′kIiIj

}
. (3.12)

where b′i = bi|sy
s. By assumption F is a weakly Landsberg metric and then

(3.12) reduces to following

M ′
ijk =

{
b′iIjIk + b′jIiIk + b′kIiIj

}
− 1

2
b′mIm

{
Iihjk + Ijhki + Ikhij

}
−||I||2

4

{
b′ihjk + b′jhki + b′khij

}
. (3.13)
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By assumption, bi is constant along geodesics, i.e., b′i = 0, then (3.13) reduces

to following

M ′
ijk = 0 (3.14)

or equivalently

Lijk − 1

4

{
Jihjk + Jjhki + Jkhij

}
= 0. (3.15)

Since F is a weakly Landsberg metric, then (3.15) implies that

Lijk = 0. (3.16)

This means that F is a Landsberg metric. □

Proposition 3.2. Let (M,F ) be a non-Riemannian 3-dimensional weakly Lands-

berg manifold. Then bi = bi(x, y) is constant along Finslerian geodesics if and

only if the following hold

(H′ − 3I ′) + 4J h0 = 0, (3.17)

(H− 3I)h0 − 4J ′ = 0, (3.18)

where

H′ := H|iy
i, I ′ := I|iyi, and J ′ := J|iy

i

denote the horizontal derivation of main scalars along Finslerian geodesics.

Proof. The following holds

b′i =
1

3F ||I||4
{[

(H′ − 3I ′)mi + (H− 3I)h0ni − 4(J ′ni − J h0mi)
]
||I||2

−2ImJm
[
(H− 3I)mi − 4J ni

]}
.(3.19)

Then b′i = 0 if and only if the following holds[
2ImJm(H− 3I)− (H′ − 3I ′ + 4J h0)||I||2

]
mi

=
[
(Hh0 − 3Ih0 − 4J ′)||I||2 + 8ImJmJ

]
ni. (3.20)

Multiplying (3.20) with mi and ni yields[
(H′ − 3I ′) + 4J h0

]
||I||2 = 2ImJm

[
H− 3I

]
, (3.21)[

(H− 3I)h0 − 4J ′
]
||I||2 = −8ImJmJ , (3.22)

By assumption F is a weakly Landsberg metric, namely it satisfies

J = 0.

Putting it in (3.21) and (3.22) yield (3.17) and (3.18), respectively. □
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Corollary 3.3. Let F = α + β be a 3-dimensional non-Riemannian Randers

metric on a manifold M . Then bi = bi(x, y) is constant along Finslerian

geodesics.

Proof. It is proved that F is a C-reducible metric if and only if its main scalars

satisfy the following

H = 3I, J = 0. (3.23)

In this case,

I =
F∥I∥
4

.

Since F is positive-definite Finsler metric, then by Matsumoto-Hōjō’s lemma,

F is a Randers metric. By considering (3.23), it is easy to see that F satisfies

(3.21) and (3.22). □

By (3.21) and (3.22), we conclude the following.

Corollary 3.4. Let (M,F ) be a non-Riemannian 3-dimensional Finsler man-

ifold. Suppose that F satisfies following

g(I,J) = 0.

Then bi = bi(x, y) is constant along Finslerian geodesics if and only if (3.17)

and (3.18) hold.

Also, the Landsberg metrics satisfy following.

Lemma 3.5. Let (M,F ) be a non-Riemannian 3-dimensional Landsberg man-

ifold. Then the quantity bi = bi(x, y) is horizontally constant along Finsler

geodesics.

Proof. Let F be a Landsberg metric. Then (3.12) reduces to following

2b′mIm
{
Iihjk + Ijhki + Ikhij

}
−4

{
b′iIjIk + b′jIiIk + b′kIiIj

}
+||I||2

{
b′ihjk + b′jhki + b′khij

}
= 0.(3.24)

Contracting (3.24) with IiIj yields

b′k||I||4 = 0.

Since ||I|| ̸= 0, then we get b′k = 0. □

Proof of Theorem 1.1: By Lemmas 3.1 and 3.5, we get the proof. □
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Finslerchen Räume, Math. Nach, 16(1957), 85-99.

9. T. Rajabi, On the norm of Cartan torsion of two classes of (α, β)-metrics, Journal of

Finsler Geometry and its Applications, 1(2020), 66-72.

10. A. Tayebi, On the class of generalized Landsbeg manifolds, Periodica. Math. Hungarica.

72(2016), 29-36.

11. A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α, β)-metrics, Indaga-

tiones Mathematicae, 27(2016), 670-683.

12. A. Tayebi and B. Najafi, The weakly generalized unicorns in Finsler geometry, Sci. China

Math. (2021). https://doi.org/10.1007/s11425-020-1853-5.

13. A. Tayebi and B. Najafi, On homogeneous Landsberg surfaces, J. Geom. Phys. 168(2021),

104314.

14. A. Tayebi and B. Najafi, Classification of 3-dimensional Landsbergian (α, β)-mertrics,

Publ. Math. Debrecen, 96(2020), 45-62.

15. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differ.

Geom. Appl. 62(2019), 253-266.

16. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing S-

curvature, Ann. Polon. Math. 114(1) (2015), 67-79.

17. A. Tayebi and H. Sadeghi, On generalized Douglas-Weyl (α, β)-metrics, Acta. Math.

Sinica. English. Series. 31(2015), 1611-1620.

18. A. Tayebi and T. Tabatabaeifar, Unicorn metrics with almost vanishing H- and Ξ-

curvatures, Turkish. J. Math. 41(2017), 998-1008.

Received: 27.06.2020

Accepted: 28.10.2020


