On projectively related spherically symmetric metrics in Finsler geometry

Document Type : Original Article

Authors

1 Faculty of Science, Department of Mathematics University of Qom, Qom, Iran E-mail: sadeghihassan64@gmail.com

2 Faculty of Science, Department of Mathematics University of Qom, Qom, Iran. Email: E-mail: moradbahadori3@gmail.com

Abstract

Inspired by the notion of projectively related spherically symmetric metrics, we study the class of Finsler metrics whose geodesics have the same shape with a difference in rotation or reflection of their graphs. This class of metrics contains the class of projectively related Finsler metrics. First, we characterize the class of Randers metrics, ( α, β )-metrics and spherically symmetric metrics in this class of metrics

Keywords


  • 1. S. B´acs´o, X. Cheng and Z. Shen, Curvature properties of (α, β)-metrics, Adv. Stud. Pure.
    Math. 48(2007), 73-110.
  • 2. G. Chen and X. Cheng, A class of Finsler metrics projectively related to a Randers
    metric, Publ. Math. Debrecen. 81(2012), 351-363.
  • 3. S. G. Elgendi , A. Soleiman and A. Abdelsalam, A new general Finsler connection,
    Journal of Finsler Geometry and its Applications, 1(1) (2020), 1-14.
  • 4. G. Hamel, Uber die Geometrien, in denen die Geraden die K¨urtzesten sind ¨ , Math. Ann.
    57(1903), 231-264.
  • 5. B. Li, Y. Shen and Z. Shen, On a class of Douglas metrics, Stud. Sci. Math. Hung.
    46(2009) 355-365.
  • 6. B. Najafi and A. Tayebi, A new quantity in Finsler geometry, C. R. Acad. Sci. Paris,
    Ser. I. 349(2011), 81-83.
  • 7. H. Sadeghi, A special class of Finsler metrics, Journal of Finsler Geometry and its
    Applications, 1(1) (2020), 60-65.
  • 8. Y. Shen and Y. Yu, On projectively related Randers metrics, Int. J. Math. 19(2008),
    503-520.
  • 9. Z. Shen, Projectively flat Finsler metrics of constant flag curvature, Trans. Amer. Math.
    Soc. 355(2003), 1713-1728.
  • 10. Z. Shen, On projectively related Einstein metrics in Riemann-Finsler geometry, Math.
    Ann. 320(2001), 625-647.
  • 11. A. Tayebi and A. Alipour, On distance functions induces by Finsler metrics, Publ Math
    Debrecen. 90(2017), 333-357.
  • 12. A. Tayebi, M. Bahadori and H. Sadeghi, λ-projectively related Finsler metrics and Finslerian projective invariants, Math Research, 6(4)(2021), 621-630.
  • 13. A. Tayebi, M. Bahadori and H. Sadeghi, On spherically symmetric Finsler metrics with
    some non-Riemannian curvature properties, J. Geom. Phys. 163 (2021), 104125.
  • 14. A. Tayebi and M. Razgordani, Four families of projectively flat Finsler metrics with
    K = 1 and their non-Riemannian curvature properties, Rev. R. Acad. Cienc. Exactas
    F´ıs. Nat. Ser. A Math. RACSAM, 112(2018), 1463-1485.
  • 15. A. Tayebi and M. Rafie Rad, S-curvature of isotropic Berwald metrics, Science in China,
    Series A: Math. 51(2008), 2198-2204.
  • 16. A. Tayebi and M. Shahbazi Nia, A new class of projectively flat Finsler metrics with
    constant flag curvature K = 1, Differ. Geom. Appl. 41(2015), 123-133.
  • 17. L. Zhou, The spherically symmetric Finsler metrics with isotropic S-curvature, J. Math.
    Anal. Appl. 431(2015), 1008-1021