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Abstract. Inspired by the notion of projectively related spherically symmetric

metrics, we study the class of Finsler metrics whose geodesics have the same

shape with a difference in rotation or reflection of their graphs. This class

of metrics contains the class of projectively related Finsler metrics. First, we

characterize the class of Randers metrics, (α, β)-metrics and spherically sym-

metric metrics in this class of metrics.
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1. Introduction

The 4-th Problem of Hilbert is finding Finsler metrics on an open subset

U ⊆ Rn whose geodesics are straight lines. The Finsler metrics which satisfy

the mentioned condition are called projective Finsler metrics (see [6], [7], [9],

[11], [14], [16]). Hamel obtained a system of PDE’s that characterizes projective

Finsler metrics [4]. He showed that a Finsler metric F = F (x, y) on U ⊆ Rn is

projective if and only if its geodesic coefficients Gi are given by

Gi(x, y) = P (x, y)yi,
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where P : TU → R is a positively homogeneous function of degree one with

respect to y. The function P = P (x, y) is called the projective factor of F .

In Riemannian geometry, two Riemannian metrics α and ᾱ on a manifold

M are projectively related metrics if the following relation holds

Gi
α(x, y) = Ḡi

ᾱ(x, y) + θ(x, y)yi,

where Gi
α and Ḡi

ᾱ are the geodesic coefficients of α and ᾱ, respectively, θ =

θ(x)yk is a closed 1-form on M , and (xi, yi) denotes the local coordinates in

TM .

In Finsler geometry, two Finsler metrics F = F (x, y) and F̄ = F̄ (x, y) on a

manifold M are projectively related if the following holds

Gi(x, y) = Ḡi(x, y) + P (x, y)yi,

where Gi and Ḡi are the geodesic coefficients of F and F̄ , respectively. In this

case, F and F̄ have the same geodesics as point sets [2][8][10].

Let F be a Finsler metric defined on a convex domain Ω ⊆ Rn. If the

orthogonal transformations of Rn act as isometry of (Ω, F ), then (Ω, F ) is called

a spherically symmetric space [17]. Let |.| and <,> denote the Euclidean norm

and inner product in Rn, respectively. In [17], Zhou showed that (Ω, F ) is

spherically symmetric if and only if

F (x, y) = uϕ(r, s),

where

r := |x|, u := |y|, s :=
< x, y >

|y|
.

The geodesic spray coefficients of F = uϕ(r, s) is given by

Gi = uPyi + u2Qxi, (1.1)

where

P :=
1

ϕ

(
(s2 − r2)ϕs − sϕ

)
Q+

1

2rϕ
(sϕr + rϕs) ,

Q :=
−ϕr + sϕrs + rϕss

2r[ϕ− sϕs + (r2 − s2)ϕss]
.

See [13]. Define Randers metrics F (x, y) = uϕ(r, s) and F̄ = uϕ̄(r, s) by

ϕ(r, s) :=
1

1 + r2
+ p(r)s, (1.2)

ϕ̄(r, s) :=
1

1 + λ2r2
+ q(r)s, (1.3)

where p := p(r) and q := q(r) are two functions in R. By (1.1), we get

Gi(x, y) = uP (r, s)yi +
u2

1 + r2
xi, (1.4)

Ḡi(x, y) = uP̄ (r, s)yi +
u2λ2

1 + λ2r2
xi, (1.5)



On Projectively Related Spherically Symmetric Metrics in Finsler Geometry 41

where Gi and Ḡi are the spray coefficients of F and F̄ , respectively. (1.4) and

(1.5) imply that

Gi(x, y) = λḠi(λx, y) + P(x, y)yi, (1.6)

where λ is a real constant and P = P(x, y) is a positively homogeneous scalar

function of degree one with respect to y (see [12]).

By definition, every projectively related Finsler metrics satisfy (1.6) with

λ = 1. The Randers metrics defined by (1.3) are special Finsler metrics, also.

Therefore the following is a natural question:

“Whenever two arbitrary Finsler metrics satisfy (1.6)?”

Since the idea of Finsler metrics satisfying (1.6) arises from two special

Randers metrics, we find the necessary and sufficient conditions under which

two arbitrary Randers metrics satisfying (1.6).

Theorem 1.1. Two Randers metrics F = α+ β and F̄ = ᾱ+ β̄ on Rn satisfy

(1.6) if and only if one of the following holds

(i) α(x, y) = cᾱ(λx, y), and β and β̄ satisfy

sij(x) = λ/c s̄ij(x),

where c = c(x) is a positive scalar function on M .

(ii) α and ᾱ satisfy (1.6), and β and β̄ are closed 1-forms.

Then, we find the necessary and sufficient condition under which an (α, β)-

metric and a Randers metric satisfy (1.6).

Theorem 1.2. Let F = αϕ(s), s = β/α, be an (α, β)-metric and F̄ = ᾱ+ β̄ be

a Randers metric on Rn (n ≥ 3), where α =
√
aij(x)yiyj and ᾱ =

√
āij(x)yiyj

are two Riemannian metrics, β = bi(x)y
i and β̄ = b̄i(x)y

i are two nonzero one

forms on Rn. Suppose that ϕ satisfies

ϕ = ks

∫
(p+ rs2)

−1
2r

s2
ds+ ts, (1.7)

where k, p, r and t are constants. Then F and F̄ satisfy (1.6) if and only if

the following hold

(i) β̄ is a closed form;

(ii) bi|j = 2τ
{
(p+ b2)aij + (r − 1)bibj

}
;
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(iii) Gi
α(x, y) = λGi

ᾱ(λx, y)− τα2bi + θyi,

where θ = ai(x)y
i is a 1-form and τ = τ(x) is a scalar function on M .

We remark that (1.7) comes from the following ODE

ϕ− sϕ′ = (p+ rs2)ϕ′′

which have many solutions in the class of (α, β)-metrics. See the Section 4.

Also, the Randers metrics (1.3) which satisfy (1.6) are written in the form

of spherically symmetric Finsler metrics. In order to find the non-trivial exam-

ples of Finsler metrics satisfying (1.6), we come back to spherically symmetric

metrics and prove the following.

Theorem 1.3. Let F = uϕ(r, s) and F̄ = uϕ̄(r, s) be two spherically symmetric

Finsler metrics on Rn. Then the spray coefficients of F and F̄ satisfy (1.6) if

and only if there exists a scalar function g := g(x) on R such that

ϕ(r, s) = s

∫ g
(
λ
√
r2 − s2

[
ϕ̄(λr, λs)− λsϕ̄s(λr, λs)

])
s2
√
r2 − s2

ds+ c(r)s, (1.8)

where ϕs := ∂ϕ/∂s and c := c(t) is a scalar function on R.

2. Preliminaries

For an n-dimensional Finsler manifold (M,F ), there is a special vector field

G which is induced by F on TM0 := TM\{0}. In a standard coordinates

(xi, yi) for TM0, it is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where

Gi(x, y) :=
gil

4

{ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

}
The homogeneous scalar functions Gi are called the geodesic coefficients of F .

The vector field G is called the associated spray to (M,F ). The projection of

an integral curve of spray G is called a geodesic in M . A curve c = c(t) is a

geodesic of F if and only if its coordinates (ci(t)) satisfy the ODE

c̈i + 2Gi(ċ) = 0.

For more details, see [3].
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The Busemann-Hausdorff volume form dVF = σF (x)dx
1 ∧ · · · ∧ dxn related

to F is defined by

σF (x) :=
Vol(Bn(1))

Vol
{
(yi) ∈ Rn

∣∣∣ F(yi ∂
∂xi |x

)
< 1

} ,
where Bn(1) denotes the unit ball in Rn.

The distortion τ = τ(x, y) on TM associated with the Busemann-Hausdorff

volume form on M , i.e., dVBH = σ(x)dx1 ∧ dx2...∧ dxn, is defined by following

τ(x, y) = ln

√
det(gij

(
x, y)

)
σ(x)

.

Then the S-curvature is defined by

S(x, y) =
d

dt

[
τ
(
c(t), ċ(t)

)]
t=0

,

where c = c(t) is the geodesic with c(0) = x and ċ(0) = y. In a local coordinates,

the S-curvature is given by

S =
∂Gm

∂ym
− ym

∂(lnσ)

∂xm
.

A Finsler metric F on an n-dimensional manifold M is said to be of isotropic

S-curvature if

S = (n+ 1)σF,

where σ = σ(x) is a scalar function on M .

For y ∈ TxM0, define By : TxM × TxM × TxM → TxM by

By(u, v, w) := Bi
jkl(y)u

jvkwl ∂

∂xi
|x,

where

Bi
jkl :=

∂3Gi

∂yj∂yk∂yl
,

u = ui ∂
∂xi |x, v = vi ∂

∂xi |x and w = wi ∂
∂xi |x. The non-Riemannian quantity B

is called the Berwald curvature. F is called a Berwald metric if B = 0.

For a non-zero vector y ∈ TxM0, define Ey : TxM × TxM → R by

Ey(u, v) := Eij(y)u
ivj ,

where

Eij :=
1

2
Bm

ijm,

Then, E is called mean Berwald curvature and F is called a weakly Berwald

metric if E = 0.
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Also, by using the Berwald and mean Berwald curvatures of F , one can define

the Douglas curvature Dy : TxM × TxM × TxM → TxM by Dy(u, v, w) :=

Di
jkl(y)u

ivjwk ∂
∂xi |x, where

Di
jkl := Bi

jkl −
2

n+ 1

{
Ejkδ

i
l + Ejlδ

i
k + Eklδ

i
j + Ejk,ly

i
}
.

The Finsler metric F satisfies D = 0 is called a Douglas metric.

3. Proof of Theorem 1.1

An (α, β)-metric is defined by

F := αϕ(s), s =
β

α
,

where ϕ = ϕ(s) is a scalar function on (−b0, b0), α =
√
aij(x)yiyj is a Riemann-

ian metric and β = bi(x)y
i is a 1-form on M . For an (α, β)-metric F := αϕ(s),

s = β/α, one can define

bi;jθ
j := dbi − bjθ

j
i ,

where θi := dxi and θji := Γj
ikdx

k are the Levi-Civita connection forms of

Riemannian metric α. Put

rij :=
1
2

(
bi;j + bj;i

)
, sij :=

1
2

(
bi;j − bj;i

)
,

rj := birij , r := bibjrij , sj := bisij , r0 := rjy
j ,

s0 := sjy
j , ri0 := rijy

j , r00 := rijy
iyj , si0 := sijy

j ,

sij := aimsmj , rij := aimrmj ,

where aij = (aij)
−1 and bi := aijbj .

Let Gi and Gi
α denote the geodesic coefficients of F and α, respectively. By

a direct computation, one gets the following formula

Gi = Gi
α +Byi + T i, (3.1)

where

B := Θα−1(r00 − 2Qαs0),

T i := αQsi0 + ψ(r00 − 2Qαs0)b
i,

Q :=
ϕ′

ϕ− sϕ′
,

Θ =
ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ
[
(ϕ− sϕ′) + (b2 − s2)ϕ′′

] ,
ψ :=

1

2

ϕ′′

(ϕ− sϕ′) + (b2 − s2)ϕ′′
.
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For a Finsler metric F with spray coefficients Gi, let us define the following

quantity.

Πi
F := Gi − 1

n+ 1
Gm

my
i.

Then we prove the following.

Lemma 3.1. Two Finsler metrics F and F̄ on a manifold M satisfy (1.6) if

and only if the following holds

Πi
F (x, y) = λΠi

F̄ (λx, y). (3.2)

Proof. Let the spray coefficients of F and F̄ satisfy

Gi(x, y) = λḠi(λx, y) + P (x, y)yi (3.3)

Thus

P (x, y) =
1

n+ 1
[Gm

m(x, y)− λḠm
m(λx, y)] (3.4)

Substitution (3.4) in (3.3), we get (3.2). □

Next we calculate the quantity Πi
F for an arbitrary (α, β)-metric.

Lemma 3.2. For an (α, β)- metric F = αϕ(s), s = β/α, on an n-dimensional

manifold M , the following holds

Πi
F = Πi

α + αQsi0 + ΨΓbi − 1

n+ 1

[
Ψ′α−1(b2 − s2)Γ +Q′s0

+2Ψ
(
r0 −Q′(b2 − s2)s0 −Qss0

)]
yi, (3.5)

where

Γ := r00 − 2Qαs0.

Proof. By a direct computation, we obtain from (3.1) that

Πi
F = Πi

α + T i − 1

n+ 1

[
(αQsm0)ym + [Ψ(r00 − 2Qαs0)b

m]ym

]
yi. (3.6)

It easy to see that

(αQsm0)ym = α−1ymQs
m
0 + α−2Q′[bmα

2 − βym]sm0

= Q′s0, (3.7)

and

[Ψ(r00 − 2Qαs0)b
m]ym = Ψ′α−1(b2 − s2)(r00 − 2Qαs0)

+2Ψ(r0 −Q′(b2 − s2)s0 −Qss0). (3.8)

Substituting (3.7) and (3.8) in (3.6), we get (3.5). □
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Proof of Theorem 1.1: Let F = α+β and F̄ = ᾱ+β̄ be two Randers metrics

and Gi and Ḡi be the spray coefficients of F and F̄ , respectively. Suppose that

Gi
α and Ḡi

α are the spray coefficients of α and ᾱ, respectively. By Lemma 3.1,

we have

Πi
F (x, y) = λΠi

F̄ (λx, y) (3.9)

Substituting ϕ = 1 + s and ϕ̄ = 1 + s̄ in (3.5), we obtain

Πi
F = Πi

α + αsi0, (3.10)

and

Πi
F̄ = Πi

ᾱ + ᾱs̄i0. (3.11)

By (3.9), (3.10) and (3.11) we get

Πi
α(x, y) + α(x, y)si0(x, y) = λΠi

α(λx, y) + λᾱ(λx, y)s̄i0(λx, y). (3.12)

It is easy to see that

Πi
α(x,−y) = Πi

α(x, y),

Πi
ᾱ(λx,−y) = Πi

ᾱ(λx, y).

Thus by replacing y by −y in (3.12), we obtain

Πi
α(x, y) = λΠi

ᾱ(λx, y), (3.13)

and

α(x, y)si0(x, y) = λᾱ(λx, y)s̄i0(λx, y). (3.14)

It follows from (3.13) that α and ᾱ satisfy (1.6). If

α(x, y) = c(x)ᾱ(λx, y)

then from (3.14) we get

sij(x) =
λ

c(x)
s̄ij(λx).

Otherwise

sij(x) = s̄ij(x) = 0.

This completes the proof. □

A Finsler metric F is said to be isotropic Berwald metric if its Berwald

curvature is in the following form

Bi
jkl = σ

{
Fyjykδil + Fykylδij + Fylyjδik + Fyjykylyi

}
, (3.15)

for some scalar function σ = σ(x) on M . Consider following Finsler metric on

the unit ball Bn ⊂ Rn,

F (y) :=

√
|y|2 − (|x|2|y|2− < x, y >2)+ < x, y >

1− |x|2
, y ∈ TxBn = Rn,
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where |.| and <,> denote the Euclidean norm and inner product in Rn, re-

spectively. F is called the Funk metric which is a Randers metric on Bn. One

can show that F is positively complete on Bn. The Funk metrics are also non-

trivial isotropic Berwald metrics σ = 1
2 . Shen proved that every Berwald metric

satisfies S = 0. Then Tayebi-Rafie Rad generalized his result and proved the

following

Lemma 3.3. ([15]) Every Finsler metric on an n-dimensional manifoldM with

isotropic Berwald curvature (3.15) has isotropic S-curvature S = (n+ 1)σF .

The converse of Lemma 3.3 is not true in general. It is interesting to find

some Finsler metrics that these notions of curvatures for those are equal. Here,

we study two Randers metrics satisfy (1.6) such that the one has isotropic

Berwald curvature. Then, we prove the following.

Theorem 3.4. Let F = α+ β and F̄ = ᾱ+ β̄ be two Randers metrics satisfy

(1.6). Suppose that F has isotropic Berwald curvature. Then F̄ has isotropic

Berwald curvature if and only if it has isotropic S-curvature.

Proof. Suppose that F̄ has isotropic S-curvature

S̄ = (n+ 1)c̄F̄ ,

where c̄ = c̄(x) is a scaler function on Rn. Then

Ēij =
n+ 1

2
c̄F̄yiyj . (3.16)

Since F and F̄ satisfy (1.6), then

Ḡi(x, y) = λGi(λx, y) + P (x, y)yi. (3.17)

By assumption, we have

Bi
jkl = c

{
Fyjykδil + Fyjylδik + Fykylδij + Fyjykylyi

}
which implies that

Eij =
n+ 1

2
cFyiyj . (3.18)

By (3.16), (3.17) and (3.18), we get

c̄F̄yiyj = cλFyiyj + Pyiyj

which yields

c̄F̄yiyjyk = cλFyiyjyk + Pyiyjyk .

Thus

B̄i
jkl =

∂3Ḡi

∂yj∂yk∂yl
= λ

{
Bi

jkl + Pyjykδil + Pyjylδik + Pykyklδij + Pyjykylyi

}
= c̄

{
F̄ylykδij + F̄yjylδik + F̄yjykδil + F̄yjykylyi

}
.
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This means that F̄ has isotropic Berwald curvature. By Lemma 3.3, the con-

verse is trivial. □

4. Proof of Theorem 1.2

In [1], Bácsó-Cheng-Shen studied the ODE (1.7). For certain values of p

and r, they found some solutions of (1.7) which can be expressed in terms of

elementary functions as follows:

(i) For r = −1 and p = ±1, we get

ϕ =

{
2
√
1− s2 + s arctan( s

1−s2 ) + εs if p = 0,
2
√
1 + s2 − ln(s+ 2

√
1 + s2)s + εs if p = −1.

(4.1)

(ii) For r = 1 and p = ±1, we have

ϕ =

{
2
√
1 + s2 + εs if p = 1,

2
√
1− s2 + εs if p = −1.

(4.2)

(iii) For r = 1 and p = ±1
3 , we get

ϕ =

{√
1 + s2 + s2√

1+s2
+ εs, if p = 1

3 ,√
1− s2 − s2√

1−s2
+ εs, if p = −1

3

(4.3)

Here, we consider the class of (α, β)-metrics F=αϕ(s), where ϕ=ϕ(s) satisfies

the following equation

ϕ− sϕ′ = (p+ rs2)ϕ′′, (4.4)

where r and p are constants. (4.4) is equal to

ϕ = ks

∫
(p+ rs2)

−1
2r

s2
ds+ ts, (4.5)

where k and t are constants.

In [5], Li-Shen-Shen considered the class of Douglas (α, β)-metrics and proved

the following.

Theorem 4.1. (Li-Shen [5]) Let F = ϕ(s), s = β/α, be an (α, β)-metric on

an open subset U ⊂ Rn (n ≥ 3), where α =
√
aij(x)yiyj and β = bi(x)y

i ̸= 0.

Let b := ||βx||α.
Suppose that the following conditions hold: (a) β is not parallel with respect

to α, (b) F is not of Randers type, and (c) db = 0 everywhere or b = constant

on U . Then F is a Douglas metric on U if and only if the function ϕ = ϕ(s)

satisfies the following ODE:{
1 + (k1 + k2s

2)s2 + k3s
2
}
ϕ′′(s) = (k1 + k2s

2)
{
ϕ(s)− sϕ′(s)

}
(4.6)
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and β satisfies

bi|j = 2τ
{
(1 + k1b

2)aij + (k2b
2 + k3)bibj

}
, (4.7)

where τ = τ(x) is a scalar function on U and k1, k2 and k3 are constants with

(k2, k3) ̸= (0, 0).

Let us consider the (α, β)-metric F = αϕ(s), s = β/α, where ϕ = ϕ(s)

satisfying (4.4). If β satisfies

bi|j = 2τ
{
(p+ b2)aij + (r − 1)bibj

}
, (4.8)

where τ = τ(x) is a scaler function, then β is a closed 1-form. In this case, F

is a Douglas metric. See page 22 in [1].

Proof of Theorem 1.2: Suppose that F and F̄ satisfy (1.6). By Lemma 3.1

the following holds

Πi
F (x, y) = λ Πi

F̄ (λx, y). (4.9)

Substituting

ϕ = ks

∫
(p+ rs2)

−1
2r

s2
ds+ ts, and ϕ̄ = 1 + s̄

into (3.5) yields

Πi
F = Πi

α + αAsi0 + C(r00 − 2Aαs0)b
i

− 1

n+ 1

{
Dα−1(b2 − s2)(r00 − 2Aαs0) +Bs0

+2C(r0 −B(b2 − s2)s0 −Ass0)

}
yi, (4.10)

Πi
F̄ = Πi

ᾱ + ᾱs̄i0. (4.11)

where

A = −(p+ rs2)

∫
(p+ rs2)

−1
2r

s2
ds− tk−1(p+ rs2)

1
2r − s−1,

B = −s(p+ rs2)
1−2r
2r

∫
(p+ rs2)

−1
2r

s2
ds− tk−1s(p+ rs2)

1−2r
2r ,

C =
1

2(p+ rs2 + (b2 − s2))
,

D =
(1− r)s

(p+ rs2 + (b2 − s2))2
.
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It follows from (4.9), (4.10) and (4.11) that

Πi
α + αAsi0 + C(r00 − 2Aαs0)b

i − 1

n+ 1

{
Dα−1(b2 − s2)(r00 − 2Aαs0)

+Bs0 + 2C
[
r0 −B(b2 − s2)s0 −Ass0

]}
yi

= λ Πi
ᾱ(λx, y) + λ ᾱ(λx, y)s̄i0(λx, y). (4.12)

Replacing yi with −yi in (4.12), one can see that

tk−1
{
2Cs0b

i +
2

n+ 1
ms0y

i − si0

}
= λᾱ(λx, y)α−1W 1− 1

2r s̄i0(λx, y), (4.13)

where

W := p+ rs2 (4.14)

m :=
(p+ rs2)(r − 1)(b− s)(b+ s)β

(p+ rs2 + b2 − s2)2α2
. (4.15)

The left side of (4.13) is rational in y while its right side is irrational. So, it

follows that

si0 = s̄i0 = 0.

Substituting s̄i0 = 0 into (4.12) implies that

Πi
F (x, y) = λ Πi

ᾱ(λx, y). (4.16)

By (4.16), it follows that F is a Douglas metric. Then, by Theorem 4.1 we

have

bi|j = 2τ
{
(p+ b2)aij + (r − 1)bibj)

}
. (4.17)

Substituting

s̄i0 = 0 and bi|j = 2τ
{
(p+ b2)aij + (r − 1)bibj

}
into (4.12), we have

Πi
F (x, y) = λΠi

ᾱ(λx, y)− τα2bi +
2

n+ 1
τβyi. (4.18)

Then by (4.18), one can conclude that

Gi
α(x, y) = λGi

ᾱ(λx, y)− τα2bi + θyi, (4.19)

where θ = ai(x)y
i is a 1-form on M . □
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5. Proof of Theorem 1.3

In this section, we are going to prove Theorem 1.3.

Proof of Theorem 1.3: Let Gi and Ḡi denote the spray coefficients of F and

F̄ , respectively. Then by (1.1), we have

Gi = uPyi + u2Qxi, (5.1)

Ḡi = uP̄yi + u2Q̄xi, (5.2)

where

P = − 1

ϕ

(
sϕ+ (r2 − s2)ϕs

)
Q+

1

2rϕ

(
sϕr + rϕs

)
,

Q =
1

2r

−ϕr + sϕrs + rϕss
ϕ− sϕs + (r2 − s2)ϕss

,

P̄ = − 1

ϕ̄

(
sϕ̄+ (r2 − s2)ϕ̄s

)
Q̄+

1

2rϕ̄

(
sϕ̄r + rϕ̄s

)
,

Q̄ =
1

2r

−ϕ̄r + sϕ̄rs + rϕ̄ss
ϕ̄− sϕ̄s + (r2 − s2)ϕ̄ss

.

Since the spray coefficients of F and F̄ satisfy (1.6), then there exists a scalar

function P = P(x, y) defined on Rn
0 such that the following holds

Gi(x, y) = λḠi(λx, y) + P(x, y)yi. (5.3)

By (5.1), (5.2) and (5.3) we get(
λuP̄ (λr, λs)− uP (r, s) + P(x, y)

)
yi + u2

(
λ2Q̄(λr, λs)−Q(r, s)

)
xi = 0.(5.4)

It follows from (5.4) that

Q(r, s) = λ2Q̄(λr, λs), (5.5)

(5.5) is equal to following

−λϕ̄r(λr, λs) + λ2sϕ̄rs(λr, λs) + λ2rϕ̄ss(λr, λs)

ϕ̄(λr, λs)− λsϕ̄s(λr, λs) + λ2(r2 − s2)ϕ̄ss(λr, λs)

=
−ϕr(r, s) + sϕrs(r, s) + rϕss(r, s)

ϕ(r, s)− sϕs(r, s) + (r2 − s2)ϕss(r, s)
.(5.6)

Put

A(r, s) :=
√
r2 − s2

[
ϕ(r, s)− sϕs(r, s)

]
,

B(r, s) := λ
√
r2 − s2

[
ϕ̄(λr, λs)− λsϕ̄s(λr, λs)

]
.

A direct computation yields

sAr(r, s) + rAs(r, s)

(r2 − s2)As(r, s)
=

Π

Ω
, (5.7)

sBr(r, s) + rBs(r, s)

(r2 − s2)Bs(r, s)
=

Π̄

Ω̄
, (5.8)
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where

Π := −ϕr(r, s) + sϕrs(r, s) + rϕss(r, s),

Π̄ := λ2sϕ̄rs(λr, λs)− λϕ̄r(λr, λs) + λ2rϕ̄ss(λr, λs),

Ω := ϕ(r, s)− sϕs(r, s) + (r2 − s2)ϕss(r, s),

Ω̄ := ϕ̄(λr, λs)− λsϕ̄s(λr, λs) + λ2(r2 − s2)ϕ̄ss(λr, λs).

By (5.6), (5.7) and (5.8), one can see that

Ar(r, s)

As(r, s)
=
Br(r, s)

Bs(r, s)
. (5.9)

So there exist a function g := g(x) such that

A(r, s) = g(B(r, s)). (5.10)

It is easy to see that (5.10) is equal to (1.8). □
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