Characterization of 3-dimensional left-invariant locally projectively flat Randers metrics

Document Type : Original Article

Author

Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology (Tehran Polytechnic), Tehran. Iran. E-mail: m.atashafrooz@aut.ac.ir

Abstract

In this paper, we characterize locally projectively flat left-invariant Randers metrics on simply connected three dimensional Lie groups.

Keywords


  • 1. S. B´acs´o and M. Matsumoto, On Finsler spaces of Douglas type II. Projectively flat
    spaces, Publ. Math. Debrecen, 53(1998), 423-438.
  • 2. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,
    Springer, New York (2000).
  • 3. 3. D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S
    3,J. Lond. Math. Soc. 66(2002), 453-467.
  • 4. X. Cheng and Z. Shen, Finsler Geometry, An Approach via Randers Spaces, Springer
    (2011).
  • 5. S.S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific Publishers, (2005).
  • 6. S. Deng and Z. Hu, On flag curvature of homogeneous Randers spaces, Canad. J. Math.
    1(2013), 66-81.
  • 7. K. Y. Ha and J. B. Lee, Left invariant metrics and curvatures on simply connected
    threedimensional Lie groups, Math. Nachr. 282(2009), 868-898.
  • 8. D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 37(2001), 407-436.
  • 9. X. Mo, Z. Shen and C. Yang, Some constructions of projectively flat Finsler metrics,
    Sci. China. Ser A: Math. 49(2006), 703-714.
  • 10. X. Mo and C. Yu, On some explicit constructions of Finsler metrics with scalar flag
    curvature, Canad. J. Math. 62(2010), 1325-1339.
  • 11. A. Rapcs´ak, Uber die bahntreuen Abbildungen metrisher R¨aume ¨ , Publ. Math. Debrecen,
    8(1961), 285-290.
  • 12. Z. Shen, Projectively flat Randers metrics with constant flag curvature, Math.
    Ann.325(2003), 19-30.
  • 13. Z. Shen, Lectures on Finsler Geometry, World Scientific Publishing, Singapore, (2001).
  • 14. S. Yibing and Y. Yaoyong, On projectively related Randers metrics, Int. J. Math.
    05(2008), 503-520.
  • 15. H. Zhu, A class of Finsler metrics of scalar curvature, Differ. Geom. Appl. 40(2015),
    321-331.