Characterization of the Killing and homothetic vector fields on Lorentzian pr-waves three-manifolds with recurrent curvature

Document Type : Original Article

Authors

1 Department of mathematics, Basic science faculty, University of Bonab, Bonab, Iran. Email: p.atashpeykar@bonabu.ac.ir

2 Department of mathematics, Basic science faculty, University of Bonab, Bonab, Iran. Email: haji.badali@ubonab.ac.ir

Abstract

We consider the Lorentzian pr-waves three-manifolds with recurrect curvature. We obtain a full classification of the Killing and homothetic vector fields of these spaces.

Keywords


  • 1. Brinkmann H.W., Einstein spaces which are mapped conformally on each other, Math.
    Ann. 94 (1925) 119145.
  • 2. Schimming R., Riemannsche Ra¨ume mit ebenfrontiger und mit ebener Symmetrie, Math.
    Nachr. 59 (1974) 128162.
  • 3. Leistner T., Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds,
    Differential Geom. Appl. 24 (2006) 458478.
  • 4. Aichelburg P.C., Curvature collineations for gravitational pp- waves,J. Math. Phys. 11
    (1970), 2458-2462.
  • 5. Calvaruso G., Zaeim A., Invariant symmetries on non-reductive homogeneous pseudoRiemannian four manifolds,Rev. Mat. Complut. 28 (2015), 599-622.
  • 6. Calvaruso G., Zaeim A., Geometric structures over four-dimensional generalized symmetric spaces,Collect. Math., to appear.
  • 7. Calvino-Louzao E., Seoane-Bascoy J., Vsazquez-Abal M.E., Vsazquez-Lorenzo R., Invariant Ricci collineations on three-dimensional Lie groups,J. Geom. Phys. 96 (2015),
    59-71.
  • 8. Hall G.S., Symmetries and curvature structure in general relativity,World Scientific Lecture Notes in Physics, Vol. 46, World Scientific Publishing Co., Inc., River Edge, NJ,
    2004.
  • 9. Hall G.S., Capocci M.S., Classification and conformal symmetry in three-dimensional
    space-times,J. Math. Phys. 40 (1999), 1466-1478.