On generalized symmetric Finsler spaces with some special (α, β)−metrics

Document Type : Original Article

Author

Department of Mathematics, University of Mohaghegh Ardabili, p.o.box. 5619911367, Ardabil-Iran. E-mail: miladzeinali@hotmail.com

Abstract

In this paper, we study generalized symmetric Finsler spaces with Matsumoto metric, infinite series metric and exponential metric.The definition of generalized symmetric Finsler spaces is a natural generalization of the definition of Riemannian generalized symmetric spaces. We prove that generalized symmetric (α, β)−spaces with Matsumoto metric, infinite series metric and exponential metric are Riemannian. We also prove that if (M, F) be a generalized symmetric Matsumoto space with F defined by the Riemannian metric a~ and the vector field X, Then the regular s−structure {sx} of (M, F) is also a regular s−structure of the Riemannian manifold (M, ã) and if (M, ã) be a generalized symmetric Riemannian space and Also suppose that F is a Matsumoto metric introduced by ã and a vector field X, Then the regular s−structure {sx} of (M, ã) is also a regular s−structure of (M, F) if and only if X is sx−invariant for all x in M.

Keywords


  • 1. H. An, S. Deng, Invariant (α,β)-metric on homogeneous manifolds,Monatsh. Math., 154
    (2008), 89-102.
  • 2. D. Bao, S. S. Chern, Z. Shen, An introduction to Riemann-Finsler geometry, SpringerVerlag, NEW-YORK (2000).
  • 3. S. S. Chern , Z. Shen, Riemann-Finsler geometry, World Scientific, Nankai Tracts in
    Mathematics, vol. 6, (2005).
  • 4. S. Deng and Z. Hou, On symmetric Finsler spaces, Israel J. Math. 162 (2007), 197-219.
  • 5. P. Habibi, A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata, 149
    (2010), 121-127.
  • 6. O. Kowalski, Generalized symmetric spaces,Lecture Notes in Mathematics, Springer Verlag, (1980).
    On generalized symmetric Finsler spaces with some special (α, β)−metrics 53.
  • 7. D. Latifi and A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys, 57 (2006)
    357-366. Erratum: Rep. Math. Phys. 60 (2007), 347.
  • 8. A. J. Ledger, M. Obata, Affine and Riemannian s-manifolds, J. Differential Geometry,
    2 (1968), 451-459.
  • 9. A. J. Ledger, Espaces de Riemann symetriques generalises, C. R. Acad. Sc. Paris, 264
    (1967), 947-948.
  • 10. L. Zhang, S. Deng, On generalized symmetric Finsler spaces, Balkan J. Geom. Appl., 21
    (2016), 113-123.