Finsler generalizations of LP-Sasakian manifolds and generalized η-Ricci solitons

Document Type : Original Article

Author

Department of Mathematics, Goenka College of Commerce and Business Administration, 210, B. B. Ganguly Street, Kolkata-700012, West Bengal, India

Abstract

We introduce a new class of Finsler manifolds modelled on LP-Sasakian structures and develop their geometric properties. The paper defines Finsler LP-Sasakian manifolds, studies their curvature behavior, and formulates generalized η-Ricci solitons in this context. Explicit examples are provided, and several directions for future research are proposed.

Keywords


 1. M. I. Akbar and E. Kilisarslan, Ricci solitons in paracontact metric manifolds with generalized connections, Turk. J. Math., 47(2023), 1021{1040.
2. M. Altunba¸s,
Generalized η-Ricci solitons on f-Kenmotsu manifolds admitting a quarter symmetric metric connection, J. Finsler Geom. Appl., 5(1) (2024), 80{87.
3. M. Altunba¸s,
Generalized η-Ricci solitons on LP-Sasakian manifolds admitting the general connection,arXiv:2507.09954, 2025.
4. M. Anastasiei,
Finsler connections and contact structures, Tensor (N.S.), 56 (1994), 23{30.
5. D. Bao, S. S. Chern, and Z. Shen,
An Introduction to Riemann-Finsler Geometry,Springer, New York, 2000.
6. J. T. Cho and M. M.
Tripathi, Ricci solitons in contact geometry, Differ. Geom. Appl.,29(1) (2011), 108{116.
7. M. Matsumoto,
Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, 1986.
8. K. Matsumoto,
On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci., 12(1989), 151-156.
9. E. Minguzzi,
Finsler spacetimes and gravity, Rep. Math. Phys., 73(2014), 87-120.
10. R. S. Mishra and A. K. Pandey,
LP-Sasakian manifolds, Indian J. Pure Appl. Math.27(1996), 245{250.
11. S. Pahan,
h-Almost conformal Ricci-Bourguignon soliton on generalized Sasakian space form with respect to quarter-symmetric metric connection, J. Finsler Geom. Appl. 6(1)(2025), 125-144.
12. E. Peyghan and A. Tayebi,
On paracontact Finsler structures, Int. J. Geom. Methods Mod. Phys. 10(2013), 1350024.
13. J. Szilasi, R. L. Lovas, and D. C. Kertesz,
Connections, Sprays and Finsler Structures,World Scientific, 2013.
14. S. Vacaru,
Finsler and Lagrange geometries in Einstein and string gravity, Int. J. Geom.Methods Mod. Phys., 9(2012), 1250041.