1. G. Allaire and A. Henrot, On some recent advances in shape optimization, Comptes
Rendus de l’Acad´emie des Sciences-Series IIB-Mechanics. 329 (5) (2001), 383-396.
2. T. Briancon, M. Hayouni, and M. Pierre, Lipschitz continuity of state functions in some
optimal shaping, Calculus of Variations and Partial Differential Equations. 23 (1) (2005),13-32.
3. D. Bucur, G. Buttazzo, Variational methods in shape optimization problems, Progress in
Nonlinear Differential Equations 65, Birkh¨auser Verlag, Basel, 2005. (Cited on p.p 212,217, 643, 650).
4. D. Bucur, G. Buttazzo, and A.Henrot, Existence results for some optimal partition problems, Advances in Mathematical Sciences and Applications. 8 (1998), 571-579.
5. G. Buttazzo and G. Dal Maso, Shape optimization for dirichlet problems: relaxed formulation and optimality conditions Applied Mathematics and Optimization. 23 (1) (1991),17-49.
6. G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems, Archive for Rational Mechanics and Analysis. 122 (1993), 183-195.
7. G. Buttazzo, G. Dal Maso, A. Garroni, A. Malusa, et al, On the relaxed formulation of some shape optimization problems, Advances in Mathematical Sciences and Applications.7 (1997), 1-24.
8. L. Caffarelli and L. Silvestre, An extension problem related to the fractional laplacian,Communications in partial differential equations. 32 (8) (2007), 1245-1260.
9. H. W. Alt and L. A. Caffarelli, Existence and regularity results for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 107-144.
10. R. Correa and A. Seeger, Directional derivative of a minimax function, Nonlinear Analysis: Theory, Methods & Applications. 9 (1) (1985), 13-22.
11. A.-L. Dalibard and D. G´erard-Varet, On shape optimization problems involving the fractional Laplacian, ESAIM: Control, Optimisation and Calculus of Variations. 19 (4)(2013), 976-1013.
12. M. C. Delfour, Differentials and semidifferentials for metric spaces of shapes and geometries, In IFIP Conference on System Modeling and Optimization. Springer, (2015),230-239.
13. M. C. Delfour, Control, shape, and topological derivatives via minimax differentiability
of lagrangians, Numerical Methods for Optimal Control Problems. (2018), 137-164.
14. M. C. Delfour, Topological derivative of state-constrained objective functions: a direct
method, SIAM Journal on Control and Optimization. 60 (1) (2022), 22-47.
15. M. C. Delfour and K. Sturm, Minimax differentiability via the averaged adjoint for control/shape sensitivity, IFAC-Papers OnLine. 49 (8) (2016), 142-149.
16. M. C. Delfour and J.-P. Zol´esio, Shapes and geometries: metrics, analysis, differential calculus, and optimization, SIAM. (2011).
17. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional sobolev
spaces, Bulletin des sciences math´ematiques. 136 (5) (2012), 521-573.
18. L. C. Evans, Partial differential equations, American Mathematical Society. 19 (2022).
19. M. Fall, I. Faye, A. Sy, and D. Seck, On shape optimization theory with fractional laplacian, Applied and Computational Mathematics. 10 (3) (2021), 56-68.
20. M. Fall, A. Sy, I. Faye, and D. Seck, On shape optimization theory with fractional plaplacian operators, In Abstract and Applied Analysis, volume 2025, page 1932719.
21. M. M. Fall, Regularity estimates for nonlocal schroidinger equations. arXiv:1711.02206,2017.
22. J. Fern´andez Bonder, A. Ritorto, and A. M. Salort, A class of shape optimization problems for some nonlocal operators, Advances in Calculus of Variations. 11 (4) (2018),373-386.
23. G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model ing & Simulation, 7 (3) (2009), 1005-1028.
24. M. Hayouni, Lipschitz continuity of the state function in a shape optimization problem,Journal of Convex Analysis. 6 (1) (1999), 71-90.
25. A. Henrot and M. Pierre, Variation et optimisation de formes: une analyse g´eom´etrique,Springer Science & Business Media. 48 (2005).
26. M. G. Ngom, I. Faye, and D. Seck, A minimax method in shape and topological derivatives
and homogenization: the case of Helmholtz equation, Nonlinear Studies. 30 (1), 2023.
27. A. A. Novotny and J. Sokolowski, An introduction to the topological derivative method.Springer, 2020
28. X. Ros-Oton and J. Serra, The dirichlet problem for the fractional laplacian: regularity
up to the boundary, Journal de Math´ematiques Pures et Appliqu´ees. 101 (3) (2014),275-302.
29. X. Ros-Oton and J. Serra, Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165 (2016), 2079-2154.
30. X. Ros-Oton and J. Serra, Regularity theory for general stable operators, Journal of Differential Equations. 260 (12) (2016), 8675-8715.
31. G. I. Sadio, A. Seck, and D. Seck, Numerical and theoretical analysis for optimal shape
inverse problems, In Nonlinear Analysis, Geometry and Applications: Proceedings of the
Second NLAGA BIRS Symposium, Cap Skirring, Senegal, January 25-30, 2022. Springer,(2022), 275-315.
32. V. H. Schulz, M. Siebenborn, and K. Welker, Structured inverse modeling in parabolic
diffusion problems, SIAM Journal on Control and Optimization. 53 (6) (2015), 3319-3338.
33. V. H. Schulz, M. Siebenborn, and K. Welker, Towards a lagrange-newton approach for
pde constrained shape optimization, New Trends in Shape Optimization. (2015), 229-249.
34. J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization,
SIAM journal on control and optimization. 37 (4) (1999), 1251-1272.
35. J. Sokolowski, and J.-P. Zol´esio, Introduction to shape optimization. Springer, 1992.
36. K. Sturm, Minimax lagrangian approach to the differentiability of nonlinear pde constrained shape functions without saddle point assumption, SIAM Journal on Control and Optimization. 53 (4) (2015), 2017 2039.
37. M. Warma, The fractional relative capacity and the fractional Laplacian with neumann
and robin boundary conditions on open sets, Potential Analysis. 42 (2015), 499-547.