Study of W7- curvature tensor on (LPK)n manifolds

Document Type : Original Article

Authors

1 Research Scholar, Department of Mathematics and Astronomy, University of Lucknow, U.P., India

2 Faculty, Department of Mathematics and Astronomy, University of Lucknow, Lucknow, U.P., India.

3 Research Scholar, Department of Mathematics and Astronomy, University of Lucknow, Lucknow, U.P., India.

Abstract

In this paper, we study the characteristics of n-dimensional Lorentzian para-
Kenmotsu manifolds (briefly, (LP K)n) endowed with the W7-curvature tensor. First,
we analyzed (LP K)n manifolds under the condition W7(X, Y, Z, ξ) = 0. Next,
we explore (LP K)n manifolds satisfying the W7-semisymmetric condition, ϕ-W7-
symmetric condition, and ϕ-W7-flat condition. Moreover, we discuss Lorentzian
para-Kenmotsu manifolds under the condition W7(U, V ) · R = 0, and prove that
such manifolds reduce to Einstein manifolds. Finally, all the relevant results have
been verified through an example.

Keywords


 1. G. P. Pokhariyal, Relativistic significance of curvature tensors, Int. J. Math. Math. Sci.5(1) (1982), 133-139.
2. M. Atceken,
Some results on invariant submanifolds of Lorentzian para-Kenmotsu manifolds Korean J. Math. 30(1) (2022), 175-185.
3. C. L. Bejan and M. Crasmareanu,
Ricci solitons in manifolds with quasi-constant curvature. Publ. Math. Debrecen, 78(1) (2011), 235-243.
4. A. M. Blaga,
η-Ricci solitons on para-Kenmotsu manifolds. ArXiv (Cornell University),2014.
5. A. Blaga,
η-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat, 30(2) (2016),489-496.
6. G.P. Pokhariyal.
Study of new curvature tensor in Sasakian manifold. Tensor, N.S.,36(1982), 222-226.
7. A. Magnon,
Semi-Riemannian Geometry with Applications to Relativity (Barrett O’Neill). SIAM Review, 28(2) (1986), 269-270.
8. B.B. Sinha, and K.L.S. Sai Prasad,
A class of almost para contact metric manifold, Bull.Calcutta. Math. Soc. 87(1995), 307-312.
9. A. Haseeb and R. Prasad,
Certain results on Lorentzian para-Kenmotsu manifolds. Bull.Paraan. Math. Soc. 39(3) (2021), 201-220.
10. A. Singh and Shyam Kishor.
Some Types of η-Ricci Solitons on Lorentzian ParaSasakian manifolds. Facta. Univ. Ser. Math. Inf. 33(2) (2018), 217-217.
11. Shyam Kishor and A. Singh,
η-Ricci solitons on 3-dimensional Kenmotsu manifolds,Bull. Transilvania. Univ. Brasov. Ser. III Math. Comp. Sci. 13(62)(1) (2020), 209-218..
12. C. S. Bagewadi, and G. Ingalahalli,
Ricci solitons in Lorentzian-Sasakian manifolds.Acta Math. Acad. Paeda. Nyire. 28(2012), 59-68.
13. G. Ingalahalli and C.S. Bagewadi,
Ricci Solitons in α-Sasakian manifolds. ISRN Geometry, 13.421384, 2012.
14. S. Kishor and P. Verma,
Some Results On W1-Curvature tensor On (k; µ)- Contact Space forms, 2018.
15. R. Prasad, A. Haseeb, A. Verma, and V.S. Yadav, A study of φ-Ricci symmetric LPKenmotsu manifolds. Int. J. Maps. Math. Volume 7, Issue 1, Pages:33-44, 2024.
16. A. Singh, S. Kishor,
Curvature Properties of η-Riccci Solitons on Para-Kenmotsu Manifolds. Kyungpook. Math. Journal. 59(2019), 149-161.
17. S. Kishor and P. Verma,
On W7-Curvature tensor of Generalized Sasakian Space Forms,Int. J. Math. Tren. Tech. 49(2017).
18. S. Kishor and P. Verma,
On W0 Curvature Tensor of Generalized Sasakian-Space-Forms,JUSPS-A Vol. 29(10) (2017), 427-439.
19. P. Alegre,
Slant submanifolds of Lorentzian Sasakian and para Sasakian manifolds. Taiwanese. J. Math. 17(3) (2013), 897-910.
20. M. M. Tripathi, P. Gupta,
T-curvature tensor on a semi-Riemannian manifold, J. Adv.Math. Stud, 4(1) (2011), 117-129.
21. U. C. De, R. N. Singh and S. K. Pandey,
On the Conharmonic Curvature Tensor of Generalized Sasakian-Space-Forms, Int. Sch. Res. Notices, 1(2012), 876276.