Some characterization of α-cosymplectic manifolds admitting hyperbolic Ricci solitons (HRS)

Document Type : Original Article

Authors

1 Department of pure mathematics, Faculty of science, Imam Khomeini International University, Qazvin, Iran.

2 Department of Mathematics, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India

Abstract

This work investigates α-cosymplectic and N(k)-contact metric (CM) manifolds equipped with an HRS. We derive some characterization properties for these manifolds.

Keywords


 1. S. Azami, Harmonic-hyperbolic geometric flow, Electron. J. Differential Equations.165(2017), 9 pp.
2. S. Azami,
Hyperbolic Ricci-Bourguignon flow, Comput. Methods Differ. Equ. 9(2) (2021),399-409.
3. G. Fasihi-Ramandi, S. Azami, M. A. Choudhary,
On hyperbolic Ricci solitons, Chaos,Solitons and Fractals, 193(2025), 116095.
4. D. E. Blair,
Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics,509, Springer Verlag, Berlin-Newyork, (1976).
5. D. E. Blair, J. S. Kim, M. M. Tripathi,
On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42(5) (2005), 883-992.
6. D. E. Blair, T. Koufogiorgos, B. J. Papantoniou,
Contact metric manifold satisfying a nullity condition, Israel J. Math., 91(1995), 189-214.
7. S. Chaubey, M. Siddiqi and D. G. Prakasha,
Invariant submanifolds of hyperbolic Sasakian manifolds and η-Ricci-Bourguignon solitons, Filomat, 36(2) (2022), 409-421.
8. B. Chow, P. Lu and L. Ni,
Hamiltons Ricci flow, Graduate Studies in Mathematics,Amer. Math. Soc., Providence, RI, (2006).
9. W. R. Dai, D. X. Kong and K. Liu,
Hyperbolic gometric flow (I): short-time existence and nonlinear stability, Pure. Appl. Math. Quarterly, 6(2010), 331-359.
10. U.C. De, A. Yildiz and S. Ghosh,
On a class of N(k)-contact metric manifolds, Math.Rep. (Bucur.) 16(66) (2014), 207{217.
11. H. Faraji, S. Azami and Gh. Fasihi-Ramandi,
h-almost Ricci solitons with concurrent potential fields, AIMS Math. 5(5) (2020), 4220-4228.
12. S. Hajiaghasi and S. Azami,
Eigenvalue estimate for the Laplace operator on Finsler manifold with weighted Ricci curvature, J. Finsler Geom. Appl. 6(1) (2025), 36-47.
13. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom.17(2) (1982), 255-306.
14. R. S. Hamilton,
The Ricci flow on surfaces, Contemporary Mathematics, 71(1988), 237-261.
15. D. Kong and K. Liu,
Wave character of metrics and hyperbolic geometric flow, J. Math.Phys. 48(2007), 103508-1-103508-14.
16. J. Lott,
The work of Grigory Perelman, International Congress of Mathematicians, Vol.I, Eur. Math. Soc., Z¨urich, (2007), 66-76.
17. S. Tanno,
Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40(1988),441-448.
18. H. I. Yoldas, S. E. Meric and E. Yasar,
Some characteristics of α-cosymplectic manifolds admitting Yamabe soliton, Palestine Journal of Mathematics, 10(1) (2021), 234-241.