On Quasi-Einstein Kropina Metrics

Document Type : Original Article

Authors

Department of mathematics, Urmia University, Urmia, Iran

Abstract

In this paper‎, ‎we consider weakly quasi-Einstein Finsler metrics‎, ‎which is extension of Einstein conception \cite{akbar}‎. ‎In fact‎, ‎we investigate quasi-Einstein Kropina metrics in both regular and singular case and we find the necessary and sufficient conditions of quasi-Ricci flat kropina metrics.

Keywords


 1. D. Bao and C. Robles, Ricci and Flag Curvatures in Finsler Geometry, Riemann-Finsler Geometry, MSRI Publications, 2004.
2. S. Bacso, X. Cheng and Z. Shen,
Curveture properties of (α; β)-metrics, Adv. Stud. Pure.Math 48, Mathematical Society of Japan, (2007), 73-110.
3. Z. Shen,
Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
4. P. Antonelli and B. Han and J. Modayil,
New results on two-dimensional constant sprays with an application to heterochrony. Nonlinear Analysis. 37(5) (1999), 545-566.
5. X. Cheng and Z. Shen and Y. F. Tian,
A class of Einstein (α; β)-metrics. Isr. J. Math.192(2012), 221-249.
6. M. Ciss, I. A. Kaboye and A. S. Diallo,
On a family of Einstein like Walker metrics, J.Finsler Geom. Appl. 6(2) (2025), 1-11.
7. M. Gabrani, B. Rezaei and E. S. Sevim,
On Einstein Finsler warped product metrics, J.Finsler Geom. Appl. 3(2) (2022), 91-98.
8. V. K. Kropina,
On projective two-dimensional Finsler spacers with a special metric.Proceeding Seminar Vector Tensor Analysis. (1961), 277-292.
9. P. Finsler,
Uber Kurven und Flachen in allgemeinen Raumen. (Dissertation, Gottingan 1918), Birkhauser Velag, Basel. 1951.
10. J. Case and Y. Shu and G.Wei,
Rigidity of quasi-Einstein metrics. Differ. Geom. Appl.29(2011), 93-100
11. S. -I. Ohta,
Finsler interposition inequalities. Calc. Var. Partial Differ. Equ. 36(2) (2009),211-249.
12. S.-I. Ohta and K.-T. Sturm,
Heat flow on Finsler manifolds. Commun. Pure Appl. Math.62(2009), 1386-1433.
13. S. S. Chen and Z. Shen,
Riemann-Finsler Geometry, Nankai Tracts in Mathematics .Vol.6. World Scientific Publishing Co. Pte. Ltd. (2005).
14. H. Zhu, On a class of Quasi-Einstein Finsler metrics, The Journal of Geometric Analysis., 32(2022), 195.
15. A. Tayebi and A. Nankali,
On generalized Einstein Randers metrics. Int. J. Geom. Meth.Modern. Phys. (2015), 1550105.
16. X. Zhang and Y. B. Shen,
On Einstein-Kropina metrics, Differ. Geom. Appl. 31(1)(2013), 80-92.
17. A. Tayebi, A. Nankali and B.Najafi,
On the class of Einstein exponential-type Finsler metrics. J. Math. Phys. Analysis. Geom., 14(1) (2018), 100-114.
18. A. Tayebi and M. Razgordani,
Four families of projectively flat Finsler metrics with K=1 and their non-Riemannian curvature properties, Rev. R. Acad. Cienc. Exactas F´ıs.Nat. Ser. A Math. RACSAM, 112(2018), 1463-1485.
19. L. Zhou,
A local classification of a class of (α; β)-metrics with constant flag curvature,Differ. Geom. Appl. 28(2) (2010), 170-193.
20. G. Wei and W. Wylie,
Comparison geometry for the smooth metric measure spaces.Proceedings of the 4-th International Congress of China Mathmatics, vol. II, Hangzhou,China, 191-202.
21. Z.H. Zhang,
Gradient Shrinking solitons with vanishing Weyl tensor, arXiv:0807.1582.
22. P. Peterson and W. Wylie,
On the classification of gradient Ricci solitons,arXiv:0712.1298.
23. M. Talebie,
On the flag curvature of left invariant generalized m-Kropina metrics on some Lie groups, J. Finsler Geom. Appl. 5(2) (2024), 62-69.