On Berwald-Matsumoto type Finsler metric

Document Type : Original Article

Authors

1 Department of Mathematics, L D College of Engineering Ahmedabad, India

2 Science Mathematics Branch, Gujarat Technological University Ahmedabad, India

Abstract

In this paper, we looked at the basic properties of the Berwald and Douglas spaces of a Finsler space with a deformed Berwald-Matsumoto metric. We also examined the conditions that make the Finsler space, with the deformed Berwald-Matsumoto metric, a Berwald and Douglas space.

Keywords


 1. T. Aikou, M. Hashiguchi and K. Yamauchi, On Matsumoto’s Finsler space with time measure, Rep. Fac. Sci., Kagoshima Univ., 23 (1990), 1-12.
2. P. L. Antonelli, R. S. Ingarden and M. Matsumoto,
The Theory of Sprays and Finsler Spaces with Applications in Physics and Biolory, Kluwer Acad. Dordrecht, 1993.
3. S. B´asc´o and M. Matsumoto,
On the Finsler spaces of Douglas type. A generalization of the notion of Berwald space, Publ. Math. Debrecen, 51(3-4) (1997), 385-406.
4. S. B´asc´o and M. Matsumoto,
Projective changes between Finsler spaces with (α; β)-matric, Tensor, N. S., 55(3) (1994), 252-257.
5. L. Berwald,
U¨ber die n-dimensionalen Geometrien konstanter Kru¨mmung, in denen dieGeraden die ku¨rzesten sind., Math Z., 30 (1929), 449-469.
6. V.K. Chaubey and B. K. Tripathi,
Hypersurfaces of a Finsler space with deformed Berwald-Matsumoto metric, Bull. Transilvania. Univ. Brasov, 11(60)(1) (2018), 37-48.
7. R. Gangopadhyaya and B. Tiwari,
On a Bernstein-type theorem for minimal surfaces with Matsumoto metric, J. Finsler Geom. Appl. 3(1) (2022), 16-30.
8. P. Kumar and B. K. Tripathi,
Finsler spaces with some special (α; β)-metric of Douglas type, Malaya J. of Math., 7(2) (2019), 132-137.
9. I. Y. Lee and H. S. Park,
Finsler spaces with infinite series (α; β)-metric, J. Korean Math. Soc., 41(3) (2004), 567-589.
10. M. Matsumoto,
Foundations of Finsler Geometry and Special Finsler spaces, Kaiseisha Press, Otsu, Japan, 1986.
11. M. Matsumoto,
The Berwald connection of a Finsler space with an (α; β)-metric, Tensor, N. S., 50 (1991), 18-21.
80 Brijesh Kumar Tripathi and Sejal Prajapati
12. M. Matsumoto, Finsler spaces with (α; β)-metric of Douglas type, Tensor, N. S., 60 (1998), 123-134.
13. M. Matsumoto,
A slope of a mountain is a Finsler surface with respect to time measure,J. Math. Kyoto Univ., 29 (1989), 17-25.
14. H. S. Park and E. S. Choi,
Finsler spaces with an approximate Matsumoto metric of Douglas type, Comm. Korean Math. Soc., 14(3) (1999), 535-544.
15. A. Sahu, M. K. Gupta and S. Sharma,
About the invariance of the Cartan connection relative to a h-Matsumoto change, J. Finsler Geom. Appl. 6(2) (2025), 32-40.
16. Z. Shen and C. Yu,
On Einstein square metrics, Publ. Math. Debrecen., 85(3) (2014), 413-424.
17. B. K. Tripathi and S. Khan,
On weakly Berwald space with a special cubic (α; β)-metric,Surveys in Math. and its App., 18 (2023), 1-11.
18. B. K. Tripathi and P. Kumar,
Douglas spaces for some (α; β)-metric of a Finsler spaces,J. Adv. Math. Stu., 15(4) (2022), 444-455.
19. B. K. Tripathi and D. Patel,
Berwald and Douglas space of a Finsler space with anexponential form of (α; β)-metric, Korean J. Math., 32(4) (2024), 661-671.