On Ξ-curvature of m-th root Finsler metrics

Document Type : Original Article

Authors

1 Department of Mathematics, Basic Sciences Faculty University of Bonab, Bonab, Iran

2 Department of Mathematics, Basic Sciences Faculty University of Bonab, Bonab, Iran.

Abstract

The notions of S-curvature and Ξ-curvature introduced by Shen that is very
effective for understanding the other Riemannian and non-Riemannian geometric properties
of Finsler metrics. Here, we study the S-curvature and Ξ-curvature of the class of cubic
and quartic (α, β)-metrics. We prove that third root (α, β)-metric of vanishing Ξ-curvature
reduces to a (−1/3)-Kropina metric or it has vanishing S-curvature. Then, we prove that
quartic (α, β)-metric of vanishing Ξ-curvature reduces to a special form of quartic (α, β)-
metric or it has vanishing S-curvature.

Keywords


 1. N. Abazari and T. Reza Khoshdani, Characterization of weakly Berwald 4-th root metrics, Ukrainian J. Math, 71(2019), 1115-1137.
2. P. L. Antonelli, R. Ingarden and M. Matsumoto,
The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Springer, 1993.
3. G.S. Asanov,
Finslerian Extension of General Relativity, Reidel, Dordrecht, 1984.
4. V. Balan,
Notable Submanifolds in Berwald-Mo´or Spaces, Geometry Balkan Press, 2010,21-30.
5. V. Balan and S. Lebedev,
On the Legendre transform and Hamiltonian formalism in Berwald-Mo´or geometry, Diff. Geom. Dyn. Syst. 12(2010), 4{11.
6. V. Balan and N. Brinzei,
Einstein equations for (h; v)-Berwald-Mo´or relativistic models,Balkan J. Geom. Appl. 11(2) (2006), 20{26.
7. V. K. Kropina,
On projective two-dimensional Finsler spaces with special metric, Tr.Semin. Vektorn. Tenzorn. Anal. Mosk. Univ, 11(1961), 277-292.
8. P. Laurian-Ioan and M. Amini,
On conformally flat square-root (α; β)-metrics. J. Finsler Geom. Appl. 2(2) (2021), 89-102.
9. J. Majidi and A. Haji-Badali,
On quintic (α; β)-metrics in Finsler geometry. J. Finsler Geom. Appl. 5(1) (2024), 52-69.
10. M. Matsumoto,
Theory of Finsler spaces with m-th root metric. II, Publ. Math. Debrecen. 49(1996), 135-155.
11. M. Matsumoto and H. Shimada,
On Finsler spaces with 1-form metric. II. BerwaldMo´or’s metric L = y1y2:::yn1=n, Tensor N. S. 32(1978), 275{278.
12. M. Matsumoto and S. Numata, On Finsler spaces with a cubic metric, Tensor (N.S.)33(2) (1979), 153-162.
13. D.G. Pavlov, Gh. Atanasiu and V. Balan,
Space-Time Structure, Algebra and Geometry,Russian Hypercomplex Society, Lilia-Print, 2007.
14. D.G. Pavlov,
Four-dimensional time, Hypercomplex Numbers in Geometry and Physics 1(2004), 31{39.
15. Z. Shen,
On some non-Riemannian quantities in Finsler geometry, Canadian Math.Bull. 56(1) (2013), 184-193.
16. H. Shimada,
On Finsler spaces with metric L = mpai1:::im(x)yi1yi2:::yim, Tensor (N.S.)33(1979), 365{372.
17. A. Tayebi,
On generalized 4-th root metrics of isotropic scalar curvature, Math. Slovaca 68(2018), 907{928.
18. A. Tayebi,
On the theory of 4-th root Finsler metrics, Tbilisi Math. Journal 12(1) (2019),83{92.
19. A. Tayebi,
On 4-th root Finsler metrics of isotropic scalar curvature, Math. Slovaca 70(2020), 161{172.
20. A. Tayebi, M. Amini and B. Najafi,
On conformally Berwald m-th root (α; β)-metrics,Facta Universitatis (NIS), Ser. Math. Inform. 35 (4) (2020), 963{981.
21. A. Tayebi and B. Najafi,
On m-th root Finsler metrics, J. Geom. Phys, 61(2011), 1479-1484.
22. A. Tayebi and B. Najafi,
On m-th root metrics with special curvature properties, Comptes Rendus Mathematique. 349(11-12)(2011), 691{693.
23. A. Tayebi, A. Nankali and E. Peyghan,
Some properties of m-th root Finsler metrics, J.Contemporary Math. Analysis 49(4) (2014), 157{166.
24. A. Tayebi and M. Razgordani,
On conformally flat fourth root (α; β)-metrics, Differ.Geom. Appl. 62 (2019), 253{266.
25. J. M. Wegener,
Untersuchungen der zwei- und dreidimensionalen Finslerschen R¨aumemit der Grundform L = p3 aik‘x0ix0kx0, Koninkl. Akad. Wetensch., Amsterdam, Proc.38(1935), 949-955.
26. Y. Yu and Y. You,
On Einstein m-th root metrics, Differ. Geom. Appl. 28 (2010), 290-294