h-Almost conformal Ricci-Bourguignon soliton on generalized Sasakian space form with respect to quarter-symmetric metric connection

Document Type : Original Article

Author

Department of Mathematics, Mrinalini Datta Mahavidyapith, Birati, Kolkata-700051, West Bengal, India

Abstract

The purpose of the present paper is to discuss about a generalized Sasakian space form with quarter-symmetric metric connection satisfying h-almost conformal Ricci-Bourguignon soliton and h-almost conformal η-Ricci-Bourguignon soliton. Here, we have evolved the nature of h-almost conformal Ricci-Bourguignon soliton on a generalized Sasakian space form with quarter-symmetric metric connection when the potential vector field is to be considered as a conformal vector field, a torse-forming vector field or a torqued vector field. Then we have established that a generalized Sasakian space form with quarter-symmetric metric connection satisfying gradient h-conformal Ricci-Bourguignon soliton to turn out an Einstein manifold. Later, we have constructed Laplacian equation from h-almost conformal η-Ricci-Bourguignon soliton with quarter-symmetric metric connection when the potential vector field ξ is of gradient of a smooth function f. Finally we have examined the existence of an extended generalized φ-recurrent generalized Sasakian space form with quarter-symmetric metric connection endowing h-almost conformal η-Ricci-Bourguignon soliton.

Keywords


 1. P. Alegre , D. E. Blair. and A. Carriazo, Generalized Sasakian space form, Israel journal of mathematics 141(2004), 157-183.
2. T. Aubin,
Me´triques riemanniennes et courbure, J. Differential Geometry. 4(1970), 383-424.
3. A. Basari and C. Murathan,
On generalized φ-recurrent kenmotsu manifolds, Sdu Fen Edebiyat Fakultesi Fen Dergisi (E-DERGI) 10(2008), 91-97.
4. N. Basu and A. Bhattacharyya,
Conformal Ricci Soliton in Kenmotsu Manifold, Global Journal of Advanced Research on Classical and Modern Geometries 4(2015), 15-21.
5. D. E. Blair,
Riemannian Geometry of Contact and Symplectic Manifolds, Birkhauser,Boston, 2000.
6. Jean-Pierre Bourguignon,
Ricci curvature and Einstein metrics, Global differential geometry and global analysis (Berlin, 1979), Lecture Notes in Math. 838(1981), 4263.
7. G. Catino, L. Cremaschi, Z. Djadli and C. Mantegazza, L. Mazzieri,
The RicciBourguignon flow, Pacific J. Math. 287(2017), 337-370.
8. B. Y. Chen,
Classification Of Torqued Vector Fields And Its Applications To Ricci Solitons, Kragujevac Journal of Mathematics 41(2017), 239-250.
9. S. Deshmukh, F. Alsolamy, Conformal vector fields and conformal transformations on a Riemannian manifold, Balkan J. Geom. Appl. 17(2012), 9-16.
10. S. K. Chaubey and Y. J. Suh,
RIcci-Bourguignon Solitons And Fischer-Marsden Conjecture On Generalized Sasakian-Space-Forms With β-Kenmotsu Structure, J. Korean Math. Soc. 60(2023), 341-358.
11. S. Dwivedi,
Some results on Ricci-Bourguignon solitons and almost solitons, CanadianMathematical Bulletin 64(2021), 591-604.
12. J. Eells Jr. and J. H. Sampson,
Harmonic mappings of Riemannian manifolds, American Journal of Mathematics 86(1964), 109-160.
13. A. Friedmann and J. A. Schouten,
U¨ ber die Geometrie der halbsymmetrischen Ubertragungen, Math.Z. 21(1924), 211-223.
14. S. Golab,
On semi-symmetric and quarter-symmetric linear connections, Tensor N. S.29(1975), 249-254.
15. R. Hamilton,
Three manifolds with positive Ricci curvature, J. Diff. Geo. 17(1982), 255-306.
16. H. A. Hayden,
Subspace of a space with torsion, Proc. Lond. Math. Soc. 34(1932), 27-50.
17. S. Kumar, P. Kumar and B. Pal,
Almost Ricci-Bourguignon soliton on warped product space, Reports on Mathematical Physics 92(2023), 99-115.
18. D. G. Prakasha, A. M. Ravindranatha, S. K. Chaubey, P. Veeresha and Y. J. Suh
h-almost Ricci Solitons on Generalized Sasakian-space-forms, Kyungpook Math. J. 62(2022), 715-728.
19. B. Prasad,
A pseudo projective curvature tensor on a Riemannian manifold, Bull. Cal.Math. Soc. 94(2002), 163-166.
20. A. Sardar and A. Sarkar,
Ricci-Yamabe solitons on a class of generalized Sasakian space forms, Asian-European Journal of Mathematics 15(2022), 2250174
21. K. Yano and S. Sawaki,
Riemannian manifolds admitting a conformal transformation group, J. Differential Geom. 2(1968), 161-184.