Complex Lagrange spaces with a special (γ, β)-metric

Document Type : Original Article

Authors

1 Department of Mathematics and Computer Science, BBD University, Lucknow (U.P.) India

2 Department of Mathematics & Statistics (Centre of Excellence) Dr.Rammanohar Lohia Avadh University, Ayodhya (U.P.), India

Abstract

 In this paper we study the complex Lagrange space with a special (γ,β)-metric and determined the fundamental metric tensor, its inverse Euler-Lagrange equation, complex semi-spray coefficient, complex non-linear connection as well as Chern-Lagrange connections for Lagrange space with the mentioned special metric. 

Keywords


 1. B. Nicolaescu, The variational problem in Lagrange spaces endowed with (α; β)-metrices,
Proc. of the 3rd International Colloq. in Engg. and Numerical Physics, Bucharest, Romania, (2005), 202-207.
2. B. Nicolaescu,
Nonlinear connection in Lagrange spaces with (α; β)-metrics, Diff. Geom.Dyn. Sys., 8(2006), 196-199.
3. D. Bao, S. S. Chern and Z. Shen,
An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000.
4. G. Munteanu,
Complex Lagrange spaces, Balkan J. Geom. Appl., 3(1)(1998), 61-71.
5. G. Munteanu,
Lagrange geometry via complex Lagrange geometry, Novi Sad J. Math.,32(2)(2002), 141-154.
6. G. Munteanu,
Complex spaces in Finsler, Lagrange and Hamilton geometries, Fundamental Theories of Physics, 141, Kluwer Academic Publisher, Dordrecht, 2004.
7. Hashiguchi, S. Hojo and M. Matsumoto,
On Landsberg spaces of two dimensions with(α; β)- metric, J. Korean Math. Soc., 10(1973), 17-26.
8. M. Kitayama, M. Azuma and M. Matsumoto,
On Finsler space with (α; β)-metric regularity, geodesic and main scalars, Journals of Hokkaido University of Education, vol.46,no.1,pp.1-10., 1995.
9. N. Aldea and G. Munteanu,
On complex Finsler spaces with Randers metric, J. Korean Math. Soc., 46(5)(2009), 949-966.
10. R. Miron,
Finsler Lagrange spaces with (α; β)-metrics and Ingarden spaces, Rep. Math.Phys., 58(3)(2006), 417-431.
11. Sweta kumari and P. N. Pandey,
Complex Lagrange spaces with (γ; β)-metric, Acta.Math. Acad. Paedagogicae. Nyiregyhaziensis. 34(2023),156-166.
12. S. Kumari and P. N. Pandey, On a complex Randers space, Nat. Acad. Sci. Lett.42(2019), 123-130.
13. S. K. Shukla and P. N. Pandey,
Lagrange spaces with (γ; β)-metric, Geometry, 1(7),2013.
14. T. N. Pandey and V. K. Chaubey,
The variational problem in Lagrange spaces endowed with (γ; β)-metrics, Int. J. Pure Appl. Math. 71(4)(2011), 633-638.