Invariant square metrics on reduced Σ−spaces

Document Type : Original Article

Author

Department of Mathematics, Islamic Azad University, Astara branch, Astara, Iran

Abstract

In this paper, we study some geometric properties of Finsler Σ−spaces with square metric. We prove that Finsler Σ−spaces with square (α, β)−metrics are Riemannian.

Keywords


1. H. An and S. Deng, Invariant (α, β)− metrics on homogeneous manifolds, Monatsh.Math., 154 (2008), 89-102.
2. P. Bahmandoust and D. Latifi, Naturally reductive homogeneous (α, β) spaces, Int. J.Geom. Methods Mod. Phys. 17(8) (2020), 2050117.
3. P. Bahmandoust, D. Latifi, On Finsler s−manifolds, Eur. J. Pur App. Math. 10(5)(2017) 1113-1125.
4. D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry,Springer-Verlag, New-York, 2000.
5. L. Berwald,Uber die n-dimensionalen Geometrien konstanter Kr¨ummung, in denen die Geraden die k¨urzesten sind. Math. Z. 30(1929), 449-469.
6. S. S. Chern and Z. Shen, Riemann-Finsler geometry, World Scientific, Nankai Tracts in Mathematics, Vol. 6 (2005).
7. M. Ebrahimi, D. Latifi, Homogeneous geodesics on five-dimensional generalized symmet-ric spaces, Int. J. Geom. 11 (2022), 17-23.
8. M. Ebrahimi, D. Latifi, Geodesic vectors of Randers metric on generalized symmetric spaces, Global Journal of Advanced Research on Classical and Modern Geometries 10 (2021), 153-165.
9. P. Habibi, A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata, 149
(2010), 121-127.
10. O. Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, Springer Verlag (1980).
11. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57 (2007) 1421-1433.
12. D. Latifi and A. Razavi, Bi-invariant Finsler metrics on Lie groups, Austral. J. Basic Appl. Sci., 5(12) (2011), 507-511.
13. D. Latifi, Bi-invariant (α, β)− metrics on Lie groups, Acta. Uni. Apulensis, 65 (2021), 121-131.
14. D. Latifi and M. Toomanian, On Finsler Σ−spaces, J. Cont. Math. Ana., 50 (2015), 107-115.
15. D. Latifi, On generalized symmetric square metrics, Acta. Uni. Apulensis, 68 (2021),63-70
16. D. Latifi, Berwald manifolds with parallel S−structures , Acta. Uni. Apulensis, 36 (2013),79-86.
17. A. J. Ledger and A. Razavi, Reduced Σ−spaces, Illinois J. Math., 26 (1982), 272-292.
18. Matsumoto, M., On Finsler spaces with Randers metric and special forms of important tensors, J. Math Kyoto Univ., 14 (1975), 477-498.
19. M. Parhizkar and D. Latifi, On the flag curvature of invariant (α, β)− metrics, Int. J. Geom. Methods Mod. Phys., 13 (2016), 1650039, 1-11.
20. L. Zhang and S. Deng, On generalized symmetric Finsler spaces, Balkan J. Geom. Appl.21 (2016), 113-123.
21. S. Zolfegharzadeh, D. Latifi and M. Toomanian, Properties on Finsler Σ−spaces, Bull. Iran. Math. Soc. 49(60) (2023), 1-13.