1. S. Azami and A. Razavi, Existence and uniqueness for solutions of Ricci flow on Finsler manifolds, Int. J. Geom. Methods Mod. Phys., 10(2013),21 pp.
2. B. Bidabad and M. Yar Ahmadi, On quasi-Einstein Finsler spaces, Bull.Iranian Math. Soc., 40(2014), 921-930.
3. X. Cheng and H. Cheng, The characterizations on a class of weakly weighted Einstein-Finsler metrics, J. Geom. Anal., 33(2023), 267.
4. X. Cheng and Z. Shen, A comparison theorem on the Ricci curvature in projective geometry, Ann. Glob. Anal. Geom., 23(2)(2003), 141-155.
5. X. Cheng and Z. Shen, Some inequalities on Finsler manifolds with weighted Ricci curvature bounded below, Results Math., 77(2022), 70.
6. S.S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, Vol. 6, Singapore: World Scientific, 2005.
7. R.S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71(1988), 237-261.
8. S. Ohta, Comparison Finsler Geometry, Springer Monographs in Mathe-matics, Cham: Springer, 2021.
9. A. Rapcs´ak,Uber die bahntreuen Abbildungen metrisher R¨aume, Publ.
Math. Debrecen, 8(1961), 285-290.
10. Z. Shen, Volume comparison and its applications in Riemann-Finsler ge-ometry, Adv. Math., 128(2)(1997), 306-328.
11. Z. Shen, Lectures on Finsler Geometry, Singapore: World Scientific, 2001.
12. Z. Shen, On projectively related Einstein metrics in Riemann-Finsler ge-ometry, Math. Ann., 320(4)(2001), 625-647.
13. Q. Xia, Almoste Ricci solitons on Finsler spaces, preprint, 2024.
14. H. Zhu and P. Rao, Rigidity of Finsler gradient steady Ricci soliton, Calc.
Var., 62(2023), 120.