Developing fixed point literature on the Branciari-Bakhtin-metric space

Document Type : Original Article

Authors

1 Department of Mathematics, Abyan University, Abyan, Yemen.

2 Department of Mathematics, Taiz University, Taiz P.O. Box 6803, Yemen

3 Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India.

4 Department of Mathematics, Hamedan Branch, Islamic Azad University,Hamedan, Iran

Abstract

In the generalizing Branciari space, some conclusions from the literature are developed and re-proved in this paper.

Keywords


1. T. Abeljawad, K. Abodayeh, N. Mlaiki, On fixed point generalizations to partial b-metric spaces, Journal of Computational Analysis and Applications, 19(5)(2015), 883-891.
2. A. Azam, M. Arshad, I. Beg, Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math., 3(2)(2009), 236-241.
3. I. Bakhtin, The contraction mapping principle in quasi metric spaces, Funct. Anal., Unianowsk Gos. Ped. Inst., 30(1989), 26-37.
4. S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fundam. Math., 3(1922), 133-181.
5. M. Boriceanu, Strictly fixed point theorems for multivalued operators in b-metric spaces, Inter. J. Mod. Math., 4(3)(2009), 285-301.
6. A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57(2000), 31-37.
7. R. George, S. Radenovic, K. P. Reshma, S. Shukla, Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl., 8(6)(2015), 1005-1013.
8. R. George, R. Rajagopalan, Common fixed point results for (η, α)-contractions in rect-angular metric spaces, Bull. Math. Anal. Appl., 5(1)(2013), 44-52.
9. A. A. Hamoud, J. Patil, B. Hardan, A. Bachhav, H. Emadifar, H. Gunerhan, Generaliza-tion Contractive Mappings on Rectangular b-Metric Space, Advances in Mathematical Physics, 2022(2022), 10 pages.
10. B. Hardan, J. Patil, A. A. Hamoud, A. Bachhav, H. Emadifar, A. Ghanizadeh, S. A. Edalatpanah, H. Azizi, On (η, γ)f,g -contractions in extended b-metric spaces, Advances in Mathematical Physics, 2022(2022), 8 pages.
11. G. Jeong, B. E. Rhoades, Maps for which F (T ) = F (Tn), Fixed Point Theory, 6(2007), 71-105.
12. Z. Kadelburg, S. Radenovic, Pata-type common fixed point results in b-metric and b-rectangular metric spaces, J. Nonlinear Sci. Appl., 8(6)(2015), 944-954.
13. J. Patil, B. Hardan, A. Bachhav, On generalized metric space type and related fixed point results, Int. J of Adv. Innovative. Research. 4(4)(2021), 273-278.
14. JR. Roshan, V. Parvaneh, Z. Kadelburg, N. Hussain, New fixed point results in b-rectangular metric spaces, Nonlinear Anal. Model. Control, 21(5)(2016), 614-634.
15. S. Shukla, Partial Rectangular Metric Spaces and Fixed Point Theorems, The Scientific World Journal, 2014(2014), 7 pages.