Utilizing Killing frames on homogeneous Finsler manifolds, we express the Berwald and mean Berwald curvatures in terms of Killing frames and get some rigidity results among them we prove that homogeneous isotropic weakly Berwald metrics reduce to weakly Berwald metric.
1. R. Gangopadhyay, A. Shriwastawa and B. Tiwari, On Finsler warped product metrics with vanishing E-curvature, AUT J. Math. Computing, 2(2021), 137-142.
2. P. Habibi, Homogeneous geodesics in homogeneous Randers spaces - examples, J. Finsler Geom. Appl., 1(1) (2020), 89-95.
3. L. Huang, On the fundamental equations of homogeneous Finsler spaces, Differ. Geom. Appl. 40(2015), 187-208.
4. Z. Hu and S. Deng, Killing fields and curvatures of homogeneous Finsler manifolds, Publ. Math. Debrecen, 94(2019), 215-229.
5. E. S. Sevim; M. Gabrani, On Finsler metrics with weakly isotropic S-curvature, AUT J. Math. Computing, 2(2021), 143-151.
6. Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128(1997) 306-328.
7. A. Tayebi and B. Najafi, On a class of homogeneous Finsler metrics, J. Geom. Phys. 140(2019), 265-270.
8. A. Tayebi and E. Peyghan, On Douglas surfaces, Bull. Math. Soc. Science. Math. Roumanie, Tome 55 (103), No 3, (2012), 327-335.
9. A. Tayebi and M. Rafie. Rad, S-curvature of isotropic Berwald metrics, Sci. China. Series A: Math. 51(2008), 2198-2204.
10. A. Tayebi and M. Razgordani, On H-curvature of (α, β)-metrics, Turkish. J. Math. 44(2020), 207-222.
11. A. Tayebi and H. Sadeghi, On generalized Douglas-Weyl (α, β)-metrics, Acta Mathematica Sinica, English Series. 31(10) (2015), 1611-1620.
12. A. Tayebi and T. Tabatabeifar, Unicorn metrics with almost vanishing H- and Ξcurvatures, Turkish. J. Math. 41(2017), 998-1008.
13. Q. Xia, Some results on the non-Riemannian quantity H of a Finsler metric, Int. J. Math. 22(2011), 925-936.
14. M. Xu and S. Deng, Killing frames and S-curvature of homogeneous Finsler spaces, Glasgow Mathematical Journal, 57(2015), 457-464.
15. M. Xu, S. Deng, L. Huang and Z. Hu, Even-dimensional homogeneous Finsler spaces with positive flag curvature, Indiana Univ. Math. J. 66(2017), 949-972.
16. M. Zeinali Laki, Flag curvature of invariant 3-power metrics on homogeneous spaces, J. Finsler Geom. Appl., 4(1) (2023), 124-132.
Zamanzadeh, M., & Sadighi, A. (2024). Some rigidity results on homogeneous Finsler spaces equipped with Killing frames. Journal of Finsler Geometry and its Applications, 5(1), 135-143. doi: 10.22098/jfga.2024.14829.1123
MLA
Mohammad Zamanzadeh; Akbar Sadighi. "Some rigidity results on homogeneous Finsler spaces equipped with Killing frames", Journal of Finsler Geometry and its Applications, 5, 1, 2024, 135-143. doi: 10.22098/jfga.2024.14829.1123
HARVARD
Zamanzadeh, M., Sadighi, A. (2024). 'Some rigidity results on homogeneous Finsler spaces equipped with Killing frames', Journal of Finsler Geometry and its Applications, 5(1), pp. 135-143. doi: 10.22098/jfga.2024.14829.1123
VANCOUVER
Zamanzadeh, M., Sadighi, A. Some rigidity results on homogeneous Finsler spaces equipped with Killing frames. Journal of Finsler Geometry and its Applications, 2024; 5(1): 135-143. doi: 10.22098/jfga.2024.14829.1123