Direction independence of the mean Landsberg tensor

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, University of Qom Qom. Iran

Abstract

Finsler manifolds some of whose characteristic tensors are direction independent provide stimulation for current research. In this paper, we show that the direction independence of the mean Landsberg tensor implies the vanishing of these tensor.

Keywords


  • 1. T. Aikou, Some remarks on the geometry of tangent bundles of Finsler spaces, Tensor,
    N. S. 52(1993), 234-242.
  • 2. M. Amini, On weakly Landsberg 3-dimensional Finsler Spaces, J. Finsler. Geom. 1(2)
    (2020), 63-72.
  • 3. S. B´acs´o and Z. Szilasi, On the direction independence of two remarkable Finsler tensors,
    Differ. Geom. Appl. (2008), 397-406.
  • 4. D. Bao and Z. Shen, On the volume of unit tangent spheres in a Finsler space, Results
    in Math. 26(1994), 1-17.
  • 5. D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S3,J. London. Math. Soc. 66(2002), 453-467.
  • 6. L. Berwald, On Finsler and Cartan geometries III, Two-dimensional Finsler spaces with
    rectilinear extremals, Ann. of Math. 42(1941), 84-112.
  • 7. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J.
    Math. 169(2009), 317-340.
  • 8. X. Cheng, Z. Shen and G. Yang, On a class of two-dimensional Finsler manifolds of
    isotropic S-curvature, Sci. China Math. 61(2018), 57-72.
  • 9. X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg
    curvature, Publ. Math. Debrecen. 72(2008), 475-485.
  • 10. S. Deng and Z. Hou, The group of isometries of a Finsler space, Pacific J. Math.
    207(2002), 149157.
  • 11. J. Majidi and A. Haji-Badali, Two classes of weakly Landsberg Finsler metrics, J. Finsler.
    Geom. 4(2) (2023), 92-102.
  • 12. M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S. 24(1972), 29-37.
  • 13. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992),
    43-84.
  • 14. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces, Tensor.
    N. S. 32(1978), 225-230.
  • 15. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev.
    59(1941), 195-199.
  • 16. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
  • 17. V. S. Sabau and H. Shimada, Classes of Finsler spaces with (α, β)-metrics, Rep. Math.
    Phys. 47(2001), 31-48.
  • 18. A. Tayebi and B. Najafi, On homogeneous Landsberg surfaces, J. Geom. Phys. 168(2021),
    104314.
  • 19. A. Tayebi and M. Rafie. Rad, S-curvature of isotropic Berwald metrics, Sci. China. Series
    A: Math. 51(2008), 2198-2204.
  • 20. C. Vincze, On a special type of generalized Berwald manifolds: semi-symmetric linear
    connections preserving the Finslerian length of tangent vectors, Europ. J. Math. 3(2017),
    1098-1171.