In this paper, we study the class of quintic (α,β)-metrics. We show that every weakly Landsberg 5-th root (α,β)-metrics has vanishing S-curvature. Using it, we prove that a quintic (α,β)-metric is a weakly Landsberg metric if and only if it is a Berwald metric. Then, we show that a quintic (α,β)-metric satisfies Ξ = 0 if and only if S = 0.
1. P. L. Antonelli, R. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Springer Science and Busines Media. 48 (1993).
2. D. Bao and S.S. Chern, A note on the Gauss-Bonnet theorem for Finsler spaces, Ann. Math. 143(1996), 233-252.
3. D. Bao and Z. Shen, On the volume of unite tangent spheres in a Finsler space, Results in Math. 26(1994), 1-17.
4. M. Matsumoto, On Finsler spaces with a cubic metric, Tensor, ns. 33 (1979), 153– 162.
5. M. Matsumoto and S. Numata, On Finsler spaces with a cubic metric, Tensor (N.S.) 33(2) (1979), 153-162.
6. B. Najafi and A. Tayebi, Some curvature properties of (α, β)-metrics, Bull. Math. Soc. Sci. Math. Roumanie. (2017), 277–291.
7. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
8. Z. Shen, Finsler manifolds with nonpositive flag curvature and constant S-curvature, Math. Z. 249(2005), 625-639.
9. Z. Shen, On some non-Riemannian quantities in Finsler geometry, Canadian Math. Bull. 56(1) (2013), 184-193.
10. H. Shimada, On Finsler spaces with roots metric L = mp ai1...im(x)yi1 yi2 ...yim,Tensor. ns. 33(1979), 365–372.
11. A. Tayebi and B. Najafi, On m-th root Finsler metrics, J. Geom. Phys, 61(2011), 1479–1484.
12. A. Tayebi and B. Najafi, On m-th root metrics with special curvature properties, Comptes Rendus Mathematique. 349(11-12)(2011), 691–693.
13. A. Tayebi, A. Nankali and E. Peyghan, Some properties of m-th root Finsler metrics, J. Contemporary. Math Analysis. 49(4) (2014), 184–193.
14. Y. Yu and Y. You, On Einstein m-th root metrics, Differ. Geom. Appl. 28 (2010), 290–294.
Majidi, J., & Haji-Badali, A. (2024). On quintic (α,β)-metrics in Finsler geometry. Journal of Finsler Geometry and its Applications, 5(1), 52-69. doi: 10.22098/jfga.2024.14740.1119
MLA
Jila Majidi; Ali Haji-Badali. "On quintic (α,β)-metrics in Finsler geometry", Journal of Finsler Geometry and its Applications, 5, 1, 2024, 52-69. doi: 10.22098/jfga.2024.14740.1119
HARVARD
Majidi, J., Haji-Badali, A. (2024). 'On quintic (α,β)-metrics in Finsler geometry', Journal of Finsler Geometry and its Applications, 5(1), pp. 52-69. doi: 10.22098/jfga.2024.14740.1119
VANCOUVER
Majidi, J., Haji-Badali, A. On quintic (α,β)-metrics in Finsler geometry. Journal of Finsler Geometry and its Applications, 2024; 5(1): 52-69. doi: 10.22098/jfga.2024.14740.1119