Geodesic vectors of infinite series (α, β)-metric on hypercomplex four dimensional Lie groups

Document Type : Original Article

Author

Department of Mathematics, University of Mohaghegh Ardabili, p.o.box. 5619911367, Ardabil-Iran.

Abstract

In this paper, we consider invariant infinite series  (α, β)--metrics. Then we describe all geodesic vectors of this spaces on the left invariant hypercomplex four dimensional simply connected Lie groups.

Keywords


  • 1. P. Bahmandoust, D. Latifi, Naturally reductive homogeneous (α, β)-spaces, Int. J. Geom.
    Methods Mod. Phys., 17(8) (2020), 2050117.
  • 2. D. Bao, S. S. Chern, Z. Shen, An introduction to Riemann-Finsler geometry, SpringerVerlage, 2000.
  • 3. M. L. Barberis, Hypercomplex structures on four-dimensional Lie groups, Proc. Am.
    Math. Soc., 125(1997), 1043-1054.
  • 4. M. Ebrahimi, D. Latifi, On Flag Curvature and Homogeneous Geodesics of Left Invariant
    Randers Metrics on the Semi-Direct Product a ⊕p r, Journal of Lie Theory, 29(2019),
    619-627.
  • 5. S. Kobayashi and K. Nomizu, Foundations of differential Geometry, Interscience Publishers, (1969).
  • 6. O. Kowalski, J. Szenthe, On the Existence of Homogeneous Geodesics in Homogeneous
    Riemannian manifolds, Geom. Dedicata, 81(2000), 209-214.
  • 7. D. Latifi,Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys.,
    57(2007), 1421–1433.
  • 8. D. Latifi, M. Toomanian, Invariant naturally reductive Randers metrics on homogeneous
    spaces, Math Sci, 6(63) (2012), 1-5.
  • 9. D. Latifi, M. Toomanian, On the existence of bi-invariant Finsler metrics on Lie groups,
    Math Sci, 7(37) (2013), 1-5.
  • 10. D. Latifi, Bi-invariant (α, β)-metrics on Lie groups, Acta Universitatis Apulensis, 65,
    (2021), 121-131.
  • 11. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys., 31(1992),
    33–65.
  • 12. M. Obata, Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Jap. J. Math, 26(1956), 43-79.
  • 13. M. Parhizkar, D. Latifi, Geodesic vectors of Randers metrics on nilpotent Lie groups of
    dimension five, Global. J. Adv. Res. Class. Moder. Geom, 7(2018), 92-101.
  • 14. M. L. Zeinali, On generalized symmetric Finsler spaces with some special (α, β) -metrics,
    Journal of Finsler Geometry and its Applications, 1(1), (2020), 45-53.