1. R.V. Ambartzumian, A note on pseudo-metrics on the plane, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 37(1976), 145-155.
2. R. Alexander, Planes for which the lines are the shortest paths between points, Illinois J. of Math., 22(1978), 177-190.
3. L. Berwald, On Finsler and Cartan geometries III, Two-dimensional Finsler spaces with rectilinear extremals, Ann. of Math. 42(1941), 84-112.
4. W. Blaschke, Integral geometrie 11: Zur Variationsrechnung, Abh. Math. Sem. Univ. Hamburg, 11(1936), 359-366.
5. H. Busemann, Problem IV: Desarguesian spaces, in Mathematical Developments arising from Hilbert Problems, Proc. Symp. Pure Math. 28(1976), Amer. Math. Soc., Providence, RI, 131-141.
6. G. Hamel, Uber die Geometrien, in denen die Geraden die K¨urtzesten sind ¨ , Math. Ann. 57(1903), 231-264.
7. Y. Li and X. Mo, On dually flat square metrics, Differ. Geom. Appl. 62(2019), 60-71.
8. A.V. Pogorelov, Hilbert’s Fourth Problem, Winston & Wiley, New York, 1982.
9. A. Rapcs´ak, Uber die bahntreuen Abbildungen metrisher R¨aume ¨.
10. Z. Shen and G. Yang, On square metrics of scalar flag curvature, arXiv:1302.3156v1.
11. Y. Shen and C. Yu, On Einstein square metrics, Publ. Math. Debrecen. 85(3-4) (2014), 413-424.
Barati, F. (2023). On class of square Finsler metrics. Journal of Finsler Geometry and its Applications, 4(2), 74-91. doi: 10.22098/jfga.2023.13750.1102
MLA
Fateme Barati. "On class of square Finsler metrics", Journal of Finsler Geometry and its Applications, 4, 2, 2023, 74-91. doi: 10.22098/jfga.2023.13750.1102
HARVARD
Barati, F. (2023). 'On class of square Finsler metrics', Journal of Finsler Geometry and its Applications, 4(2), pp. 74-91. doi: 10.22098/jfga.2023.13750.1102
VANCOUVER
Barati, F. On class of square Finsler metrics. Journal of Finsler Geometry and its Applications, 2023; 4(2): 74-91. doi: 10.22098/jfga.2023.13750.1102