On non-Riemannian quantities in Finsler geometry

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, University of Qom, Qom. Iran

Abstract

This paper introduces new non-Riemannian quantities and classes of Finsler metrics. The study focuses on the class of Generalized Douglas Weyl GDW-metrics, which is contained in the class of Finsler metrics. The paper constructs the new sub-classes of GDW-metrics and presents illustrative examples.

Keywords


  • 1. PL. Antonelli and RS. Ingarden and M. Matsumoto, The Theorey of Sprays and Finsler
    Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, 1993.
  • 2. H. Akbar-Zadeh, Sur les espaces de Finsler ´a courbures sectionnelles constantes, Bulletins de ´lAcad´emie Royale de Belgique, 5e S´erie - Tome LXXXIV, 10(1988), 281-322.
  • 3. S. B´acs´o and I. Papp, A note on generalized Douglas space, Periodica Mathematica
    Hungarica, 48(2004), 181-184.
  • 4. D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S3,
    Journal of London Mathematics Society, 66(2002), 453-467.
  • 5. X. Cheng and Z. Shen, On Douglas metrics, Publ. Math. Debrecen. 66 3-4(2005), 503-
    512.
  • 6. X. Cheng and Z. Shen, Randers metrics with special curvature properties, Osaka Journal
    of Mathematics, 40 (2003), 87-101.
  • 7. J. Douglas, The general geometry of paths, Annals of Mathematics, 29(1927-28), 143-168.
  • 8. B. Najafi and B. Bidabad and A. Tayebi, On R-quadratic Finsler metrics, Iranian Journal
    of Science and Technology, Transaction A, Science 32 (2008), 439-443.
  • 9. B. Najafi and A. Tayebi, A new quantity in Finsler geometry, Comptes Rendus Mathematique. 349(1) (2011), 81-83.
    On non-Riemannian quantities in Finsler geometry 73.
  • 10. N. Sadeghzadeh, Beyond the Generalized Douglas-Weyl sapaces, Publ. Math. Debrecen.
    Submitted.
  • 11. N. Sadeghzadeh, Generalized Berwald Projective Weyl (GBWf) metrics, Submitted.
  • 12. Z. Shen, Landsberg curvature, S-curvature, and Riemann curvature, in A Sampler of
    Finsler Geometry, Mathematical Sciences Research Institute Publications, 50. Cambridge
    University Press, Cambridge, (2004), 303-355.
  • 13. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
  • 14. Z. Szab´o, Ein Finslerscher Raum ist gerade dann von skalarer Kru¨mmung, wennseine
    Weyl sche ProjectivKru¨mmung verschwindet, Acta Scientiarum Mathematicarum 39
    (1977), 163-168.
  • 15. H. Weyl, Zur Infinitesimal geometrie ; Einordnung der projektiven und der konformen
    Auffassung, G¨ottinger Nachrichten, (1921), 99-112.
  • 16. G. Yang, On a class of singular Douglas and projectively flat Finsler metrics, Differ.
    Geom. Appl. 32(2014), 113-129.