An algorithm for constructing A-annihilated admissible monomials in the Dyer-Lashof algebra

Document Type : Original Article

Authors

School Of Mathematics, Statistics, And Computer Science College Of Science University Of Tehran

Abstract

We present an algorithm for computing A-annihilated elements of the form QI[1] in H*QS0 where I runs through admissible sequences of positive excess. This is algorithm with polynomial time complexity to address a sub-problem of an unsolved problem in algebraic topology known as the hit problem of Peterson which is likely to be NP-hard.

Keywords


  • 1. Edward B. Curtis.The Dyer-Lashof algebra and the Λ-algebra. Ill. J. Math., 19(1975),
    231–246.
  • 2. A. S. Janfada and R. M. W. Wood. The hit problem for symmetric polynomials over the
    Steenrod algebra. Math. Proc. Cambridge Philos. Soc., 133(2) (2002), 295–303.
  • 3. A.S. Janfada and R.M.W. Wood. Generating H∗(BO(3); F32) as a module over the
    Steenrod algebra. Math. Proc. Camb. Philos. Soc., 134(2)(2003), 239–258.
  • 4. Stewart Priddy. Dyer-Lashof operations for the classifying spaces of certain matrix
    groups. Quart. J. Math. Oxford Ser. (2), 26(102) (1975), 179–193.
  • 5. Grant Walker and Reginald M. W. Wood. Polynomials and the mod 2 Steenrod algebra. Vol. 1. The Peterson hit problem, volume 441 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2018.
  • 6. Grant Walker and Reginald M. W. Wood. Polynomials and the mod 2 Steenrod algebra. Vol. 2. Representations of GL(n; F2), volume 442 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2018.
  • 7. Robert J. Wellington. The A-algebra H∗Ωn+1Σn+1X, the Dyer-Lashof algebra, and the
    Λ-algebra. 1977. Thesis (Ph.D.) The University of Chicago.
  • 8. Robert J. Wellington. The unstable Adams spectral sequence for free iterated loop spaces.
    Mem. Am. Math. Soc., 36(258):225, 1982.
  • 9. R. M. W. Wood. Hit problems and the Steenrod algebra. Lecture notes, University of
    Ioan- nina, Greece, June 2000.
  • 10. Hadi Zare. The Dyer-Lashof algebra and the hit problems. (appendix by HasanZadeh,
    Seyyed Mohammad Ali). New York J. Math., 27(2021), 1134–1172.