Projective Ricci curvature of Randers metrics of navigation data point of view

Document Type : Original Article

Authors

1 Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran

2 Department of Mathematics, Faculty of Science, Urmia University Urmia, Iran.

Abstract

The projective Ricci curvature is an important projective invariant in Finsler geometry. In this paper, we study and characterize projective Ricci flat isotropic S-curvature Randers metrics from a navigation data point of view and conclude that these metrics are weak Einsteinian.

Keywords


  • 1. D. Bao and C. Robles, Ricci and flag curvatures in Finsler geometry, A sampler of
    Riemann-Finsler geometry, 50(2004), 197-259.
  • 2. D. Bao, C. Robles, and Z. Shen, Zermelo navigation on Riemannian manifols, Journal
    of Differential Geometry, 66(3):377-435, 2004.
  • 3. X. Cheng and B. Rezaei, Erratum and addendum to the paper: ”on a class of projective
    Ricci flat Finsler metrics”, Publ. Math. Debrecen. 93(2018).
  • 4. X. Cheng, Y. Shen and X. Ma, On a class of projective Ricci flat Finsler metrics, Publ.
    Math. Debrecen, 7528(2017), 1-12.
  • 5. X. Cheng and Z. Shen, Finsler geometry. An approach via Randers spaces, 2012.
  • 6. M. Gabrani, B. Rezaei and E. S. Sevim, On projective invariants of general spherically
    symmetric finsler spaces in Rn, Differ. Geom. Appl. 82(2022), 101869.
  • 7. M. Gabrani, E. S. Sevim and Z. Shen, Some projectively ricci-flat (α, β)-metrics, Periodica. Math. Hungarica. 86(2023), 514-529.
  • 8. B. Najafi and A. Tayebi, A new quantity in Finsler geometry, Comptes Rendus Mathematique, 349(2011), 81-83.
  • 9. C. Robles, Einstein metrics of Randers type. Phd thesis, University of British Columbia,
    2003.
  • 10. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Springer Science Business
    Media, 2013.
  • 11. L. Sun and Z. Shen, On the Projective Ricci curvature, Science China Mathematics,
    2020.
  • 12. H. Zhu, On a class of projectively Ricci-flat Finsler metrics, Differ. Geom. Appl.
    73(2020), 101680.