One of the Helmholtz conditions for the inverse problem of a Lagrangian Mechanics is the metric compatibility of a semispray and the associated nonlinear connection with a generalized Lagrange metric. In this paper, with respect to the supermetric induced by the Hessian of the Lagrangian, we find a family of nonlinear connections compatible with supermetric. In a particular case, when a Lagrangian superfunction is regular, we have a solution for the Euler-Lagrange superequation which defines a metric nonlinear connection.
1. E. Azizpour, Introducing a nonlinear connection in a Lagrangian supermechanical system, J. Adv. Math. Stud. 5 (2012), no. 2, 82-89.
2. E. Azizpour, A characterization of Finsler supermanifolds which are Riemannian supermanifolds, Annals of the Alexandru Ioan Cuza University - Mathematics, 2014.
3. W. Barthel, Nichtlineare Zusammenh¨ange und deren Holonomie gruppen, J. Reine Angew. Math. 212 (1963) 120–149.
4. A. Bejancu, A New Viewpoint on Differential Geometry of supermanifolds, I, II( Timisoara, Romania: Timisoara University Press) Ellis Horwood Limited, 1990.
6. J. F. Carinena and H. Figueroa, Hamiltonian versus Lagrangian formulations of supermechanics, J. Phys. A, Math. Gen. 30 (1997), no. 8, 2705–2724.
7. E. Cartan, Les Espaces de Finsler , Hermann, Paris (1934).
8. M. Crampin, On horizontal distributions on the tangent bundle of a differentiable manifold, J. London Math. Soc. (2) 3 (1971), 178–182.
9. M. Crampin, E. Martinez and W. Sarlet, Linear connections for systems of second-order ordinary differential equations, Ann. Inst. Henri Poincar 65 (2) (1996) 223–249.
10. B. DeWitt, Supermanifolds, (Cambridge: Cambridge University Press ) 2nd edn, 1992.
11. C. Ehresmann, Les connexions infinit´esimales dans un espace fibr´e diff´erentiable, Coll. Topologia, Bruxelles 29–55 (1955).
12. E. Esrafilian and E. Azizpour, Nonlinear connections and Supersprays in Supermanifolds, Rep. Math. Phys. 54 (2004) 365-372.
13. L. A. Ibort, G. Landi, J. Marn-Solano, and G. Marmo, On the inverse problem of Lagrangian supermechanics, Internat. J. Modern Phys. A 8 (1993), no. 20, 3565-3576.
14. L. A. Ibort, and J. Marn-Solano, Geometrical foundations of Lagrangian supermechanics and supersymmetry, Rep. Math. Phys.32 (1993), no. 3, 385-409.
15. J. Grifone, Structure presque-tangente et connexions. I., Ann. Inst. Fourier (Grenoble) 22 (1972), no. 1, 287–334.
16. J. Kern, Lagrange Geometry, Arch. Math. 25 (1974), 438-443.
17. Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys. 69 (2004), 61–87.
18. R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Academic Publishers, 1994.
19. M.M. Rezaii and E. Azizpour, On a Superspray in Lagrange Superspaces, Rep. Math. Phys. 56 (2005) 257-269.
20. W. Sarlet, The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics, J. Phys. A 15 (1982) 1503–1517.
21. S. Vacaru and H. Dehnen, Locally Anisotropic Structures and Nonlinear Connections in Einstein and Gauge Gravity, Gen. Rel. Grav. 35 (2003) 209-250.
22. S. I. Vacaru, Superstrings in higher order extensions of Finsler Superspaces, Nucl. Phys. B494 (1997) no. 3, 590-656.
23. S. I. Vacaru, Nonlinear Connections in Superbundles and Locally Anisotropic Supergravity, E-print: gr-qc/9604016.
24. S. I. Vacaru, Interactions, Strings and Isotopies in Higher Order Anisotropic Superspaces, Hadronic Press, Palm Harbor, FL, USA, 1998.
Azizpour, E. (2023). On the compatibility of supermetrics with nonlinear connections. Journal of Finsler Geometry and its Applications, 4(2), 22-37. doi: 10.22098/jfga.2023.13513.1094
MLA
Esmaeil Azizpour. "On the compatibility of supermetrics with nonlinear connections", Journal of Finsler Geometry and its Applications, 4, 2, 2023, 22-37. doi: 10.22098/jfga.2023.13513.1094
HARVARD
Azizpour, E. (2023). 'On the compatibility of supermetrics with nonlinear connections', Journal of Finsler Geometry and its Applications, 4(2), pp. 22-37. doi: 10.22098/jfga.2023.13513.1094
VANCOUVER
Azizpour, E. On the compatibility of supermetrics with nonlinear connections. Journal of Finsler Geometry and its Applications, 2023; 4(2): 22-37. doi: 10.22098/jfga.2023.13513.1094