On the compatibility of supermetrics with nonlinear connections

Document Type : Original Article

Author

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht‎, ‎Iran.

Abstract

One of the Helmholtz conditions for the inverse problem of a ‎Lagrangian Mechanics is the metric compatibility of a semispray‎ ‎and the associated nonlinear connection with a generalized‎ ‎Lagrange metric‎. ‎In this paper‎, ‎with respect to the supermetric‎ ‎induced by the Hessian of the Lagrangian‎, ‎we find a family of‎ ‎nonlinear connections compatible with supermetric‎. ‎In a particular case‎, ‎when a Lagrangian superfunction‎ ‎is regular‎, ‎we have a solution for the Euler-Lagrange‎
‎superequation which‎ ‎defines a metric nonlinear connection‎.

Keywords


  • 1. E. Azizpour, Introducing a nonlinear connection in a Lagrangian supermechanical system, J. Adv. Math. Stud. 5 (2012), no. 2, 82-89.
  • 2. E. Azizpour, A characterization of Finsler supermanifolds which are Riemannian supermanifolds, Annals of the Alexandru Ioan Cuza University - Mathematics, 2014.
  • 3. W. Barthel, Nichtlineare Zusammenh¨ange und deren Holonomie gruppen, J. Reine
    Angew. Math. 212 (1963) 120–149.
  • 4. A. Bejancu, A New Viewpoint on Differential Geometry of supermanifolds, I, II(
    Timisoara, Romania: Timisoara University Press) Ellis Horwood Limited, 1990.
  • 5. I. Bucataru, Metric nonlinear connections, Differential Geom. Appl. 25 (2007), no. 3,
    335–343.
  • 6. J. F. Carinena and H. Figueroa, Hamiltonian versus Lagrangian formulations of supermechanics, J. Phys. A, Math. Gen. 30 (1997), no. 8, 2705–2724.
  • 7. E. Cartan, Les Espaces de Finsler , Hermann, Paris (1934).
  • 8. M. Crampin, On horizontal distributions on the tangent bundle of a differentiable manifold, J. London Math. Soc. (2) 3 (1971), 178–182.
  • 9. M. Crampin, E. Martinez and W. Sarlet, Linear connections for systems of second-order
    ordinary differential equations, Ann. Inst. Henri Poincar 65 (2) (1996) 223–249.
  • 10. B. DeWitt, Supermanifolds, (Cambridge: Cambridge University Press ) 2nd edn, 1992.
  • 11. C. Ehresmann, Les connexions infinit´esimales dans un espace fibr´e diff´erentiable, Coll.
    Topologia, Bruxelles 29–55 (1955).
  • 12. E. Esrafilian and E. Azizpour, Nonlinear connections and Supersprays in Supermanifolds,
    Rep. Math. Phys. 54 (2004) 365-372.
  • 13. L. A. Ibort, G. Landi, J. Marn-Solano, and G. Marmo, On the inverse problem of Lagrangian supermechanics, Internat. J. Modern Phys. A 8 (1993), no. 20, 3565-3576.
  • 14. L. A. Ibort, and J. Marn-Solano, Geometrical foundations of Lagrangian supermechanics
    and supersymmetry, Rep. Math. Phys.32 (1993), no. 3, 385-409.
  • 15. J. Grifone, Structure presque-tangente et connexions. I., Ann. Inst. Fourier (Grenoble)
    22 (1972), no. 1, 287–334.
  • 16. J. Kern, Lagrange Geometry, Arch. Math. 25 (1974), 438-443.
  • 17. Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys. 69 (2004), 61–87.
  • 18. R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Academic Publishers, 1994.
  • 19. M.M. Rezaii and E. Azizpour, On a Superspray in Lagrange Superspaces, Rep. Math.
    Phys. 56 (2005) 257-269.
  • 20. W. Sarlet, The Helmholtz conditions revisited. A new approach to the inverse problem
    of Lagrangian dynamics, J. Phys. A 15 (1982) 1503–1517.
  • 21. S. Vacaru and H. Dehnen, Locally Anisotropic Structures and Nonlinear Connections
    in Einstein and Gauge Gravity, Gen. Rel. Grav. 35 (2003) 209-250.
  • 22. S. I. Vacaru, Superstrings in higher order extensions of Finsler Superspaces, Nucl.
    Phys. B494 (1997) no. 3, 590-656.
  • 23. S. I. Vacaru, Nonlinear Connections in Superbundles and Locally Anisotropic Supergravity, E-print: gr-qc/9604016.
  • 24. S. I. Vacaru, Interactions, Strings and Isotopies in Higher Order Anisotropic Superspaces, Hadronic Press, Palm Harbor, FL, USA, 1998.