Angle geometry between Teichmüller geodesic segments

Document Type : Original Article

Authors

1 Department of Mathematics and Statistics, Central University of Punjab, Bathinda, India.

2 Department of Mathematics and Statistics, Central University of Punjab, VPO: Ghudda, Bathinda-151401, Punjab, India

Abstract

In this paper we discuss some results related to angle between geodesic segments in an infinite dimensional and an asymptotic Teichmüller space. Also, we construct a geodesic triangle in Universal Teichmüller space and calculate all of its interior angles.

Keywords


  • 1. K. Bugajska, Teichm¨uller spaces of string theory, Int. J. Theoretical. Physics. 32(8)
    (1993), 1329-1362.
  • 2. M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag,
    Berlin, 1999.
  • 3. C. J. Earle and Z. Li, Isometrically embedded polydisks in infinite dimensional Teichm¨uller spaces, J. Geom. Anal. 9(1999), 51-71.
  • 4. J. Fan and Y. Jiang, Angle geometry in universal Teichm¨uller space, Proc. American.
    Math. Soc. 143(2014), 1651-1659.
  • 5. Y. Hu and Y. Shen, On angles in Teichm¨uller spaces, Mathematische Zeitschrift. 277
    (1-2) (2014), 181-193.
  • 6. Z. Li, Non-uniqueness of geodesics in infinite dimensional Teichm¨uller spaces. Complex
    Var. Theory Appl. 16 (1991), 261-272.
  • 7. Z. Li and Y. Qi, Fundamental inequalities of Reich-Strebel and triangles in a Teichm¨uller
    space, Contemp. Math. 575 (2012), 283-297.
  • 8. Z. Li, A note on geodesics in infinite dimensional Teichm¨uller spaces, Ann. Acad. Sci.
    Fenn. Math. 20 (1995), 301-313.
  • 9. L. Liu, W. Su and Y. Zhong, Distance and angles between Teichm¨uller geodesics, Adv.
    in Math. 360 (2020), 106892.
  • 10. H. Masur, On a class of geodesics in Teichm¨uller space, Ann. of Math. 102(1975), 205-
    221.
  • 11. H. Masur and M. Wolf, Teichm¨uller space is not Gromov hyperbolic, Ann. Acad. Sci.
    Finn. Math. 20(1995), 259-267.
  • 12. Y. Minsky, Extremal length estimates and product regions in Teichm¨uller space, Duke
    Math. J. 83(1996), 249-286.
  • 13. S. Mondal, An arithmetic property of the set of angles between closed geodesics on hyperbolic surfaces of finite type, Geom. Dedicata. 195 (1) (2018), 241-247.
  • 14. A. Mondino, A new notion of angle between three points in a metric space, Crelle’s
    Journal 2015. 706(2013), 103-121.
  • 15. O. Pekonen, Universal Teichm¨uller space in geometry and physics, Journal of Geometry
    and Physics. 15(1995), 227-251.
  • 16. H. L. Royden, Automorphisms and isometrics of Teichm¨uller space, Advances in the
    Theory of Riemann Surfaces. 66(1971), 369-384.
  • 17. K. Strebel, On the extremality and unique extremality of quasiconformal mappings of a
    parallel strip, Rev. Roumaine Math. Pures Appl. 32(1987), 923-928.
  • 18. W. Su and Y. Zhong, The Finsler geometry of the Teichm¨uller metric, European Journal
    of Mathematics, 3(4) (2017), 1045-1057.
  • 19. L. Tamassay, Angle in Minkowski and Finsler spaces, Bull. de la Soci´et´e des Sciences et
    des Lettres de ´od´z S´erie Recherches sur les D´eformations. 49(2006), 7-14.
  • 20. W. Yeng, Angles in Teichm¨uller spaces, J. Math. Anal. Appl. 486 (1), (2020), 123879.
  • 21. G. Yao, A binary infinitesimal form of Teichm¨uller metric, Journal D’analyse
    Math´ematique, 131 (1) (2017), 323-335.