Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman & Mahani Mathematical Reaserch Center, 7616914111, Kerman, Iran.
Using the action of a Lie group on a hypergroup, the notion of Lie hypergroup is defined. It is proved that tangent space of a Lie hypergroup is a hypergroup and that a differentiable map between two Lie hypergroup is good homomorphism if and only if its differential map is a good homomorphism. The action of a hypergroup on a set is defined. Using this notion, hypergroup bundle is introduced and some of its basic properties are investigated. In addition, some results on qutient hypergroups are given.
1. M. Akram, W. Dudek, B. Davvaz and K. P. Shum, Generalized fuzzy Lie ideals of Lie algebras,
2. J. Chvalina, S. Hoskova-Mayerova, A. Dehghan Nezhad, General actions of hyperstructures and some applications, Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat. 21 (2013), 59-82 .
3. P. Corsini, V. Leoreanu, Application of hyperstructure theory, Kluwerd Academic Publisher, 2003.
4. J. Chvalina, S. Hoskovaimayerova, Modelling of join spaces with proximities by first order linear partial differential operators, Ital. J. Pure Appl. Math. 21 (2007), 177-190 .
5. D. Heidari, B. Davvaz, S. M. S. Modarres, Topological Polygroups, Bull. Malays. Math. Sci. Soc. 39 (2016), 707-721 .
6. D. Heidari, B. Davvaz and S. M. S Modarres, Topological hypergroups in the sense of Marty, Commun. Algebra. 42 (2014), 4712-4721.
7. S. Hoskova,Topological hypergroupoids, Comput. Math. Appl. 64 (2012).
8. M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. Math. Sci., 6 (1983), 307-312.
9. H. Mousa Jafarabadi, N. Haniza. Sarmin and M. R. Molaei, Simple semi hypergroups,Aust. j. basic appl. sci. 5 (2011), 51-55 .
10. H. Mousa Jafarabadi, N. Haniza Sarmin and M. R. Molaei, Completely simple abd regular semi hypergroups, Bull. Malays. Math. Sci. Soc. 35 (2012), 335-343 .
11. H. Mousa Jafarabadi and M. R. Molaei and N. Haniza Sarmin, Complete semihyper dynamical system and its application in linguisties, Adv. Environ. Biol. 8 (2014), 643- 648.
12. F. Marty, Role De La notion d’hyperoupe dans letudedes groupes non abeliens, Comples Renclus Academic Science Paris Mathematics, 201 (1935), 636-638.
13. M. R. Molaei and F. Iranmanesh, Conjugacy in Hyper Semi-dynamical Systems, Gen. Math. 12 (2004), 11-16 .
14. M. Scafati Tallini, A-ipermoduli e spazi ipervettoriali, Ital. J. Pure Appl. Math. 3 (1988), 1-46.
15. M. Scafati Tallini, Hypergroups and geometric spaces, Ratio Mathematica. 22 (2012), 69-84.
16. M. Shirvani, S. Mirvakili, B. Davvaz Strongly transitive geometric spaces on hypergroups from strongly U -regular relations, Linear. Algebra. Appl. 21 (2022), 2250094.
17. M. Toomanian, M. Amini and A. Heydari, Representations of double coset Lie hypergoups, Iran. J. Math. Sci. Inform. 11 (2016), 87-96 .
18. F. W. Warner, Foundations of differentiable manifolds and Lie groups, Springer Verlag, 1980.
19. H. Yazarli, D. Yi lmaz and B. Davvaz, The maximal hyperrings of quotients, Ital. J. Pure Appl. Math. 44 (2020), 938-951.
20. J. Zhan, S. Sh. Mousavi and M. Jafarpour, On hyperactions of hypergroups, UPB Scientific Bulletin, Series A. 73 (2011), 117-128 .
Ebrahimi, N., & Waezizadeh, T. (2022). On hyperactions and Lie hypergroup. Journal of Finsler Geometry and its Applications, 3(1), 127-140. doi: 10.22098/jfga.2022.10397.1060
MLA
Neda Ebrahimi; Tayebeh Waezizadeh. "On hyperactions and Lie hypergroup", Journal of Finsler Geometry and its Applications, 3, 1, 2022, 127-140. doi: 10.22098/jfga.2022.10397.1060
HARVARD
Ebrahimi, N., Waezizadeh, T. (2022). 'On hyperactions and Lie hypergroup', Journal of Finsler Geometry and its Applications, 3(1), pp. 127-140. doi: 10.22098/jfga.2022.10397.1060
VANCOUVER
Ebrahimi, N., Waezizadeh, T. On hyperactions and Lie hypergroup. Journal of Finsler Geometry and its Applications, 2022; 3(1): 127-140. doi: 10.22098/jfga.2022.10397.1060