On hyperactions and Lie hypergroup

Document Type : Original Article

Authors

Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman & Mahani Mathematical Reaserch Center, 7616914111, Kerman, Iran.

Abstract

Using the action of a Lie group on a hypergroup, the notion of Lie hypergroup is defined. It is proved that tangent space of a Lie hypergroup is a hypergroup and that a differentiable map between two Lie hypergroup is good homomorphism if and only if its differential map is a good homomorphism. The action of a hypergroup on a set is defined. Using this notion, hypergroup bundle is introduced and some of its basic properties are investigated. In addition, some results on qutient hypergroups are given.

Keywords


  • 1. M. Akram, W. Dudek, B. Davvaz and K. P. Shum, Generalized fuzzy Lie ideals of Lie
    algebras,
  • 2. J. Chvalina, S. Hoskova-Mayerova, A. Dehghan Nezhad, General actions of hyperstructures and some applications, Analele Stiint. ale Univ. Ovidius Constanta Ser. Mat. 21
    (2013), 59-82 .
  • 3. P. Corsini, V. Leoreanu, Application of hyperstructure theory, Kluwerd Academic Publisher, 2003.
  • 4. J. Chvalina, S. Hoskovaimayerova, Modelling of join spaces with proximities by first order
    linear partial differential operators, Ital. J. Pure Appl. Math. 21 (2007), 177-190 .
  • 5. D. Heidari, B. Davvaz, S. M. S. Modarres, Topological Polygroups, Bull. Malays. Math.
    Sci. Soc. 39 (2016), 707-721 .
  • 6. D. Heidari, B. Davvaz and S. M. S Modarres, Topological hypergroups in the sense of
    Marty, Commun. Algebra. 42 (2014), 4712-4721.
  • 7. S. Hoskova,Topological hypergroupoids, Comput. Math. Appl. 64 (2012).
  • 8. M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. Math. Sci., 6 (1983),
    307-312.
  • 9. H. Mousa Jafarabadi, N. Haniza. Sarmin and M. R. Molaei, Simple semi hypergroups,Aust. j. basic appl. sci. 5 (2011), 51-55 .
  • 10. H. Mousa Jafarabadi, N. Haniza Sarmin and M. R. Molaei, Completely simple abd regular
    semi hypergroups, Bull. Malays. Math. Sci. Soc. 35 (2012), 335-343 .
  • 11. H. Mousa Jafarabadi and M. R. Molaei and N. Haniza Sarmin, Complete semihyper
    dynamical system and its application in linguisties, Adv. Environ. Biol. 8 (2014), 643-
    648.
  • 12. F. Marty, Role De La notion d’hyperoupe dans letudedes groupes non abeliens, Comples
    Renclus Academic Science Paris Mathematics, 201 (1935), 636-638.
  • 13. M. R. Molaei and F. Iranmanesh, Conjugacy in Hyper Semi-dynamical Systems, Gen.
    Math. 12 (2004), 11-16 .
  • 14. M. Scafati Tallini, A-ipermoduli e spazi ipervettoriali, Ital. J. Pure Appl. Math. 3 (1988),
    1-46.
  • 15. M. Scafati Tallini, Hypergroups and geometric spaces, Ratio Mathematica. 22 (2012),
    69-84.
  • 16. M. Shirvani, S. Mirvakili, B. Davvaz Strongly transitive geometric spaces on hypergroups
    from strongly U -regular relations, Linear. Algebra. Appl. 21 (2022), 2250094.
  • 17. M. Toomanian, M. Amini and A. Heydari, Representations of double coset Lie hypergoups, Iran. J. Math. Sci. Inform. 11 (2016), 87-96 .
  • 18. F. W. Warner, Foundations of differentiable manifolds and Lie groups, Springer Verlag,
    1980.
  • 19. H. Yazarli, D. Yi lmaz and B. Davvaz, The maximal hyperrings of quotients, Ital. J. Pure
    Appl. Math. 44 (2020), 938-951.
  • 20. J. Zhan, S. Sh. Mousavi and M. Jafarpour, On hyperactions of hypergroups, UPB Scientific Bulletin, Series A. 73 (2011), 117-128 .