On pseudoconvexity conditions and static spacetimes

Document Type : Original Article

Authors

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Abstract

Recently, the relationship between (geodesics) convexity, connectedness, and completeness properties in Riemannian manifolds (∑; h) and the causal properties in Lorentzian static spacetimes (M; g) = (R × ∑; -dt2 + h) is studied. In this paper, some sufficient conditions are introduced to (∑; h) be geodesically convex.

Keywords


  • 1. A. Bautista, A. Ibort, J. Lafuente, and R. Low, A conformal boundary for space-times
    based on light- like geodesics: The 3-dimensional case, J. Math. Phys. 58(2017), 022503.
  • 2. J. K. Beem and P.E. Parker, Klein–Gordon solvability and the geometry of geodesics,
    Pacific J. Math. 107(1983), 1–14.
  • 3. J. K. Beem, and P. E. Parker, Pseudoconvexity and general relativity, J. Geom. Phys.
    4(1987), 71–80.
  • 4. J. K. Beem and P. E. Parker, Pseudoconvexity and geodesic connectedness, Ann. Mat.
    Pura Appl. 155(1989), 137–142.
  • 5. J. K. Beem and A. Krolak, Cosmic censorship and pseudoconvexity, J. Math. Phys.,
    33(1992), 2249–2253.
  • 6. J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian Geometry, Marcel Dekker,
    New York, 1996.
  • 7. J. Hedicke, E. Minguzzi, B. Schinnerl, R. Steinbauer, and S. Suhr, Causal simplicity and
    (maximal) null pseudoconvexity, Class. Quantum Grav. 38(2021), 227002 .
  • 8. R. J. Low, The geometry of the space of null geodesics, J. Math. Phys. 30(1989), 809–811.
  • 9. R. J. Low, Spaces of causal paths and naked singularities, Class. Quantum Grav 7(1990),
    943–954.
  • 10. E. Minguzzi, Lorentzian causality theory, Living Reviews in Relativity, 22(1):3(2019).
  • 11. R. Pourkhandani and Y. Bahrampour, The space of causal curves and separation axioms,
    Class. Quantum Grav, 29(2012).
  • 12. M. Sanchez, Geodesic connectedness of semi–Riemannian manifolds, Nonlinear Anal, 47
    (5)(2001), 3085–3102.
  • 13. M. Sanchez, On the geometry of static spacetimes, Nonlinear Anal, 63(2005).
  • 14. H. J. Seifert, Global connectivity by timetike geodesics, Zs. fur Naturforsch. 22a(1967),
    1356–1360.
  • 15. M. Vatandoost and Y. Bahrampour, Some necessary and sufficient conditions for admitting a continuous sphere order representation of two-dimensional space-times, J. Math.
    Phys., 53(2012), 122501.
  • 16. M. Vatandoost, R. Pourkhandani, and N. Ebrahimi, On null and causal pseudoconvex
    space-times, J. Math. Phys., 60(2019), 012502.
  • 17. M. Vatandoost, R. Pourkhandani, and N. Ebrahimi, Causaly simple spacetimes and
    Naked Singularities, arXiv:2105.03730v1 [gr-qc] 8 May 2021.
  • 18. F. Treves, lntroduction to Pseudodifferential and Fourier Integral Operatorss, vols. 1 and
    2, Plenum, New York and London, 1980.