Some rigidity results on complete Finsler manifolds

Document Type : Original Article

Authors

1 Department of Statistics, The University of Auckland, Auckland, New Zealand

2 Center of Mathematics, Computing and Cognition - CMCC Federal University of ABC - UFABC, SP, Brazil.

Abstract

We provide an extension of Obata's theorem to Finsler geometry and establish some rigidity results based on a second-order differential equation. Mainly, we prove that every complete simply connected Finsler manifold of positive constant flag curvature is isometrically homeomorphic to a Euclidean sphere endowed with a certain Finsler metric and vice versa. Based on these results, we present a classification of Finsler manifolds which admit a transnormal function. Specifically, we show that if a complete Finsler manifold admits a transnormal function with exactly two critical points, then it is homeomorphic to a sphere.

Keywords


  • 1. H. Akbar-Zadeh, Sur les espaces de Finsler ‘a courbures sectionnelles constantes. Acad.
    Roy. Belg. Bull. Cl. Sci. 74, 1 (1988), 281322.
  • 2. H. Akbar-Zadeh, Initiation to Global Finsler Geometry. Elsevier, North Holland, 2006.
  • 3. M. M. Alexandrino, B. O. Alves and H. R. Dehkordi, On Finsler transnormal functions.
    Differential. Geom. Appl. 65(2019), 93-107.
  • 4. A. Asanjarani and B. Bidabad, Classification of complete Finsler manifolds through a
    second order differential equation, Differential Geom. Appl. 26(2008), 434-444.
  • 5. D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry. New
    York, Springer, 2012.
  • 6. D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S
    3,J. Lond. Math. Soc. 66(2002), 453-467.
  • 7. B. Bidabad, On compact Finsler spaces of positive constant curvature, C. R. Math. Acad.
    Paris. 349(2011), 1191-1194.
  • 8. B. Bidabad and A. Tayebi, A classification of some Finsler connections and their applications. Publ. Math. Debrecen. 71(2007), 253-266.
  • 9. N. Boonnam, R. Hama and S. V. Sabau, Berwald spaces of bounded curvature are
    Riemannian, Acta Math. Acad. Paedagog. Nyiregyhaziensis (2017), 339-347.
  • 10. A. Cauchy, Sur les polygones et les poly´edres: second m‘emoire. lEcole Polytechnique,
    XVIe Cahier. 9(1813), 26-38.
  • 11. H. R. Dehkordi, Finsler Transnormal functions and singular foliations of codimension
    1. PhD thesis, PhD thesis at IME University of Sao paulo, 2018.
  • 12. H. R. Dehkordi, Mathematical modeling the wildfire propagation in a randers space,
    arXiv preprint arXiv:2012.06692 (2020).
  • 13. H. R. Dehkordi, Mathematical modeling of wildfire propagation in an agricultural land,
    Proc. Ser. Braz. Soc. Comput. Appl. Math. 8(2021).
  • 14. H. R. Dehkordi, Applications of Randers geodesics for wildfire spread modelling, Appl.
    Math. Model (2022).
  • 15. H. R. Dehkordi and A. Saa, Huygens envelope principle in Finsler spaces and analogue
    gravity. Class. Quantum Grav. 36(2019), 085008.
  • 16. S. Deng and M. Xu, Recent progress on homogeneous Finsler spaces with positive curvature, Eur. J. Math. 4(2017), 974-999.
  • 17. C. Ekici and C. Muradiye, A note on Berwald eikonal equation, In J. Phys.: Conf. Ser.
    766(2016), 012029.
  • 18. P. Foulon, Locally symmetric Finsler spaces in negative curvature, Compt. Rendus.
    Acad. Sci. Math. 324(1997), 11271132.
  • 19. P. Foulon, Curvature and global rigidity in Finsler manifolds. Houston J. Math.
    28(2002), 263-292.
  • 20. S. Gallot, Equations diff‘erentielles caract‘eristiques de la sphere, In Ann. Sci. de lEcole.
    Norm. Superieure. 12(1979), 235-267.
  • 21. P. M. Gruber and J. M. Wills, Chapter 1.7 of Handbook of Convex Geometry, Vol. A.
    North-Holland Publishing Co., 1993.
  • 22. T. Gudlaugur, Chapter 10 - a survey on isoparametric hypersurfaces and their generalizations. In Handbook of Differential Geometry, F. J. Dillen and L. C. Verstraelen,
    Eds., vol. 1 of Handbook of Differential Geometry. North-Holland, (2000), 963-995.
  • 23. Q. He, S. Yin and Y. Shen, Isoparametric hypersurfaces in minkowski spaces, Differ.
    Geom. Appl. 47(2016), 133-158.
  • 24. C. Kim and J. Yim, Rigidity of noncompact Finsler manifolds, Geom. Dedicata.
    81(2000), 245-259.
  • 25. C. Kim and J. Yim, Finsler manifolds with positive constant flag curvature, Geom.
    Dedicata. 98(2003), 47-56.
  • 26. C. W. Kim, Locally symmetric positively curved Finsler spaces, Arch. Math. 88(2007),
    378-384.
  • 27. D. Lehmann, Une g´en´eralisation de la g´eom´etrie du plongement. S´eminaire Ehresmann,
    Topologie et g´eom´etrie diff´erentielle. 6(1964), 1-21.
  • 28. H. B. Rademacher, A sphere theorem for non-reversible Finsler metrics, Math. Ann.
    328(2004), 373-387.
  • 29. Z. Shen, Lectures on Finsler geometry, World Scientific, Singapore, 2001.
  • 30. Z. Shen, Finsler manifolds with nonpositive flag curvature and constant S-curvature,
    Math. Zeitschrift. 249(2005), 625-639.
  • 31. Z. Shen, Differential geometry of spray and Finsler spaces, Springer, Netherlands, 2013.
  • 32. Q. M. Wang, Isoparametric functions on Riemannian manifolds, Math. Ann.
    277(1987), 639-646.
  • 33. B. Wilking and W. Ziller, Revisiting homogeneous spaces with positive curvature, J. f¨ur
    die Reine und Angew. Math. 738(2018), 313-328.
  • 34. B. Y. Wu, Some rigidity theorems for locally symmetrical Finsler manifolds, J. Geom.
    Phys. 58(2008), 923-930.
  • 35. G. Wu and R. Ye, A note on Obata’s rigidity theorem, Commun. Math. Stat. 2(2014),
    231-252.
  • 36. M. Xu and J. A. Wolf, Sp(2)/U(1) and a positive curvature problem, Differ. Geom.
    Appl. 42(2015), 115-124.
  • 37. M. Xu, L. Zhang, et al. δ-homogeneity in Finsler geometry and the positive curvature
    problem, Osaka J. Math. 55(2018), 177-194.