R-complex Finsler spaces with an arctangent Finsler metric

Document Type : Original Article

Authors

1 Department of Mathematics and Statistics, Banasthali Vidyapith, Tonk, Rajasthan-India

2 Department of Mathematics and Statistics, Central University of Punjab, Bathinda, Punjab, India

Abstract

In this paper, we have defined the concept of the R-complex Finsler space with an arctangent (α, β)-metric  F = α + ε β + β  tan-1( β / α).  For this metric, we have obtained the fundamental metric tensor fields gijand gi¯j as well as their determinants and inverse tensor fields. Further, some properties of non-Hermitian R-complex Finsler spaces with this metric have been described.

Keywords


  • 1. M. Abate and G. Patrizio, Finsler Metrics - A Global Approach, Lecture Notes in Math.
    (1951), Springer-Verlag, Berlin, 1994.
  • 2. M. Abate and G. Patrizio, On some classes of R-complex Hermitian Finsler spaces,
    manuscript, 2013 edition, 1994.
  • 3. T. Aikou, Projective flatness of complex Finsler metrics, Publ. Math. Debrecen.
    63(2003), 343–362.
  • 4. N. Aldea, About a special class of two dimensional Finsler spaces, Indian J. Pure Appl.
    Math. 43(2)(2012), 107–127.
  • 5. N. Aldea and G. Munteanu, On complex Finsler spaces with Randers metric, J. Korean
    Math. Soc. 46(5)(2009), 949–966.
  • 6. N. Aldea and M. Purcaru, R-complex Finsler spaces with (α, β)-metric, Novi Sad J.
    Math. 38(1)(2008), 1–9.
  • 7. P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The theory of sprays and Finsler
    spaces with applications in Physics and Biology, Springer-Dordrecht, 2013.
  • 8. G. Campean and G. Munteanu, R-complex hermitian (α, β)-metrics, Bull. Transilvania.
    Univ. Brasov. 56(2)(2014), 15–28.
  • 9. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992),
    43–83.
  • 10. G. Munteanu, Complex Spaces in Finsler, Lagrange and Hamilton Geometries, SpringerDordrecht, 2004.
  • 11. G. Munteanu and M. Purcaru, On R-complex Finsler spaces, Balkan J. Geom. Appl.
    14(1)(2009), 52–59.
  • 12. M. Purcaru, On R-complex Finsler spaces with Kropina metric, Bull. Transilvania .Univ.
    Brasov. 53(4)(2011), 79–88.
  • 13. G. D. Rizza, Structure dii Finsler di tippo quasi Hermitiano, Riv. Mat. Univ. Parma
    4(1963), 83–106.
  • 14. V. S. Sab˜au and H. Shimada, Remarkable classes of (α, β)-metric spaces, Rep. on Math.
    Phys. 47(1)(2001), 31–48.
  • 15. G. Shanker and R. S. Kushwaha, Nonholonomic frame for Finsler spaces with a special
    quartic metric, Indian J. pure appl. Math. 120(2)(2018), 283–290.