On new classes of stretch Finsler metrics

Document Type : Original Article

Authors

1 Institute of Mathematics, University of Debrecen, H-4002 Debrecen, Pf. 400, Hungary

2 Doctoral School of Mathematical and Computational Sciences, Institute of Mathematics, University of Debrecen, H-4002 Debrecen, Pf. 400, Hungary

Abstract

In this paper, we introduce two classes of stretch Finsler metrics. A Finsler metric with vanishing stretch  B-curvature ( stretch H-curvature) is called B-stretch (H-stretch) metric (respectively). The class of B-stretch (H-stretch) metric contain the class of Berwald (weakly Berwald) metric (respectively). First, we show that every complete B-stretch metric (H-stretch metric) is a B-metric (H-metric). Then we prove that every compact Finsler manifold with non-negative (non-positive) relatively isotropic stretch B-curvature (stretch H-curvature) is B-metric (H-metric).

Keywords


  • 1. H. Akbar-Zadeh, Sur les espaces de Finsler a courbures sectionnelles constants, Bull.
    Acad. Roy. Bel. Cl. Sci., (1988), 281-322.
  • 2. H. Akbar-Zadeh, Les espaces de Finsler et certaines de leurs gnralisations, Ann. Sci.
    cole Normale Sup., 80(3) (1963), 1-79.
  • 3. L. Berwald, Uber Parallel¨ubertragung in R¨aumen mit allgemeiner Maßbestimmung ¨ , Jber.
    Deutsch. Math. Verein, 34 (1925), 2013-2020.
  • 4. L. Berwald, Untersuchung der Kr¨ummung allgemeiner metrischer R¨aume auf Grund
    des in ihnen herrschenden Parallelismus, Math. Z., 25 (1926), 40-73.
  • 5. L. Berwald, Parallel¨ubertragung in allgemeinen R¨aumen, Atti. Congr. Intern. Math.
    Bologna, 4 (1928), 263-270.
  • 6. P. Finsler, ber Kurven und Flchen in allgemeinen Rumen, (Dissertation, Gttingen,1918),
    Birkhuser Verlag, Basel, 1951.
  • 7. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Wiley, 1969.
  • 8. M. Matsumoto, An improvment proof of Numata and Shibata’s theorem on Finsler spaces
    of scalar curvature, Publ. Math. Debrecen, 64 (2004), 489-500.
  • 9. B. Najafi, Z. Shen, and A. Tayebi, Finsler metric of scalar flag curvature with special
    non-Riemannian curvature properties, Geom. Dedicata, 131 (2008), 87-97.
  • 10. B. Najafi and A. Tayebi, Weakly stretch Finsler metrics, Publ. Math. Debrecen.
    91(2017), 441-454.
  • 11. B. Riemann, Uber die Hypothesen, welche der Geometrie zu Grunde liegen, Abhandlungen der Kniglichen Gesellschaft der Wissenschaften zu Gttingen, 13 (1854), 133-150.
  • 12. C. Shibata, On Finsler spaces with Kropina metrics, Report. Math., 13 (1978), 117-128.
    On New Classes of Stretch Finsler Metrics 99.
  • 13. Z. Shen, Differential geometry of spray and Finsler spaces (Kluwer Academic Publishers,
    Dordrecht, 2001).
  • 14. A. Tayebi, On the class of generalized Landsberg manifold, Period. Math. Hungar., 72(1)
    (2016), 29-36 .
  • 15. A. Tayebi, A. Ghasemi and M. Sabzevari, On weakly stretch Randers metric, Math. Ves.
    73(3)(2021), 174-182.
  • 16. A. Tayebi, M. Faghfuri and N. Jazer, On mean stretch curvatures of Finsler metrics,
    Acta Math. Univ. Comenianae, 2 (2020), 335-342.
  • 17. A. Tayebi and B. Najafi, The weakly generalized unicorns in Finsler geometry, Sci. China
    Math., 64(9) (2021), 2065-2076.
  • 18. H. T. Vishkaei, M. Toomanian, R. C. Katamy, and M. Nadjafikhah, On homogeneous
    weakly stretch Finsler metrics, Bull. Iran. Math Soc., 1 (2021), 1-12.
  • 19. B. Y. Wu, A global rigidity theorem for weakly Landsberg manifolds, Sci. China Ser. A,
    50(5) (2007), 609-614.
  • 20. L. N. Youssef and S. G. Elgendi, New Finsler package, Comput. Phys. Commun., 185(3)
    (2014), 986-997.